Programming Assignment 3 YOLOv5 Object Detection
Aaron Christopher Tanhar
• 49 min read
- Deskripsi
- Custom Training with YOLOv5
- Step 1: Install Requirements
- Step 2: Assemble Our Dataset
- Annotate
- Version
- Export
- Download Code
- Step 3: Train Our Custom YOLOv5 model
- Evaluate Custom YOLOv5 Detector Performance
- Run Inference With Trained Weights
- Conclusion and Next Steps
Deskripsi
Saya mengambil dataset dari kaggle
Dataset tersebut memiliki gambar cheetah dan hyena. Saya mengambil 900 gambar cheetah dan 900 gambar hyena sehingga total gambar adalah 1800. Kemudian saya menganotasi gambar-gambar tersebut dengan menggunakan roboflow.
Kemudian sesuai langkah-langkah saya menggenerate datasetnya.
Lalu saya menggunakan notebook yang di generate dari wiki
Lalu saya membuat akun Weights and Biases untuk melakukan Weights and Biases Logging.
Selanjutnya kita train dan menyesuaikan epoch. Saya menggunakan epoch sebanyak 150. Sebenarnya sudah mencoba 200 epoch tapi terlalu lama sehingga tidak jadi.
Setelah di train maka kita akan melakukan tes pada weight terbaik yang sudah digenerate setelah training.
Jumlah gambar yang digunakan untuk test adalah 10% dari 1800 yaitu 180. Gambar deteksi ditampilkan dengan bounding box dan confidence. Setelah itu weight disimpan.
Custom Training with YOLOv5
In this tutorial, we assemble a dataset and train a custom YOLOv5 model to recognize the objects in our dataset. To do so we will take the following steps:
- Gather a dataset of images and label our dataset
- Export our dataset to YOLOv5
- Train YOLOv5 to recognize the objects in our dataset
- Evaluate our YOLOv5 model's performance
- Run test inference to view our model at work
!git clone https://github.com/ultralytics/yolov5 # clone repo
%cd yolov5
%pip install -qr requirements.txt # install dependencies
%pip install -q roboflow
import torch
import os
from IPython.display import Image, clear_output # to display images
print(f"Setup complete. Using torch {torch.__version__} ({torch.cuda.get_device_properties(0).name if torch.cuda.is_available() else 'CPU'})")
Cloning into 'yolov5'...
remote: Enumerating objects: 10222, done.
remote: Total 10222 (delta 0), reused 0 (delta 0), pack-reused 10222
Receiving objects: 100% (10222/10222), 10.54 MiB | 24.14 MiB/s, done.
Resolving deltas: 100% (7060/7060), done.
/content/yolov5
|████████████████████████████████| 596 kB 11.5 MB/s
|████████████████████████████████| 145 kB 13.2 MB/s
|████████████████████████████████| 178 kB 42.6 MB/s
|████████████████████████████████| 1.1 MB 17.6 MB/s
|████████████████████████████████| 67 kB 5.1 MB/s
|████████████████████████████████| 138 kB 49.9 MB/s
|████████████████████████████████| 62 kB 755 kB/s
Building wheel for roboflow (setup.py) ... done
Building wheel for wget (setup.py) ... done
ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
google-colab 1.0.0 requires requests~=2.23.0, but you have requests 2.26.0 which is incompatible.
datascience 0.10.6 requires folium==0.2.1, but you have folium 0.8.3 which is incompatible.
albumentations 0.1.12 requires imgaug<0.2.7,>=0.2.5, but you have imgaug 0.2.9 which is incompatible.
Setup complete. Using torch 1.10.0+cu111 (Tesla K80)
Step 2: Assemble Our Dataset
In order to train our custom model, we need to assemble a dataset of representative images with bounding box annotations around the objects that we want to detect. And we need our dataset to be in YOLOv5 format.
In Roboflow, you can choose between two paths:
- Convert an existing dataset to YOLOv5 format. Roboflow supports over 30 formats object detection formats for conversion.
- Upload raw images and annotate them in Roboflow with Roboflow Annotate.
Annotate
Version
Export
Download Code
from roboflow import Roboflow
rf = Roboflow(model_format="yolov5", notebook="ultralytics")
upload and label your dataset, and get an API KEY here: https://app.roboflow.com/?model=yolov5&ref=ultralytics
os.environ["DATASET_DIRECTORY"] = "/content/datasets"
from getpass import getpass
rf = Roboflow(api_key=getpass('Enter the api key: '))
project = rf.workspace().project("visikom_pa03")
dataset = project.version(1).download("yolov5")
Enter the api key: ·········· loading Roboflow workspace... loading Roboflow project... Downloading Dataset Version Zip in /content/datasets/Visikom_PA03-1 to yolov5pytorch: 100% [58871666 / 58871666] bytes
Extracting Dataset Version Zip to /content/datasets/Visikom_PA03-1 in yolov5pytorch:: 100%|██████████| 3612/3612 [00:04<00:00, 884.26it/s]
Step 3: Train Our Custom YOLOv5 model
Here, we are able to pass a number of arguments:
- img: define input image size
- batch: determine batch size
- epochs: define the number of training epochs. (Note: often, 3000+ are common here!)
-
data: Our dataset locaiton is saved in the
dataset.location
- weights: specify a path to weights to start transfer learning from. Here we choose the generic COCO pretrained checkpoint.
- cache: cache images for faster training
%pip install wandb
!python train.py --img 416 --batch 16 --epochs 150 --data {dataset.location}/data.yaml --weights yolov5s.pt --cache
Collecting wandb Downloading wandb-0.12.7-py2.py3-none-any.whl (1.7 MB) |████████████████████████████████| 1.7 MB 10.8 MB/s Collecting docker-pycreds>=0.4.0 Downloading docker_pycreds-0.4.0-py2.py3-none-any.whl (9.0 kB) Collecting configparser>=3.8.1 Downloading configparser-5.2.0-py3-none-any.whl (19 kB) Requirement already satisfied: requests<3,>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from wandb) (2.26.0) Collecting GitPython>=1.0.0 Downloading GitPython-3.1.24-py3-none-any.whl (180 kB) |████████████████████████████████| 180 kB 35.7 MB/s Requirement already satisfied: PyYAML in /usr/local/lib/python3.7/dist-packages (from wandb) (6.0) Requirement already satisfied: six>=1.13.0 in /usr/local/lib/python3.7/dist-packages (from wandb) (1.15.0) Collecting sentry-sdk>=1.0.0 Downloading sentry_sdk-1.5.1-py2.py3-none-any.whl (140 kB) |████████████████████████████████| 140 kB 52.1 MB/s Requirement already satisfied: python-dateutil>=2.6.1 in /usr/local/lib/python3.7/dist-packages (from wandb) (2.8.2) Collecting subprocess32>=3.5.3 Downloading subprocess32-3.5.4.tar.gz (97 kB) |████████████████████████████████| 97 kB 7.5 MB/s Requirement already satisfied: protobuf>=3.12.0 in /usr/local/lib/python3.7/dist-packages (from wandb) (3.17.3) Requirement already satisfied: promise<3,>=2.0 in /usr/local/lib/python3.7/dist-packages (from wandb) (2.3) Collecting pathtools Downloading pathtools-0.1.2.tar.gz (11 kB) Collecting shortuuid>=0.5.0 Downloading shortuuid-1.0.8-py3-none-any.whl (9.5 kB) Requirement already satisfied: Click!=8.0.0,>=7.0 in /usr/local/lib/python3.7/dist-packages (from wandb) (7.1.2) Requirement already satisfied: psutil>=5.0.0 in /usr/local/lib/python3.7/dist-packages (from wandb) (5.4.8) Collecting yaspin>=1.0.0 Downloading yaspin-2.1.0-py3-none-any.whl (18 kB) Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.7/dist-packages (from GitPython>=1.0.0->wandb) (3.10.0.2) Collecting gitdb<5,>=4.0.1 Downloading gitdb-4.0.9-py3-none-any.whl (63 kB) |████████████████████████████████| 63 kB 1.8 MB/s Collecting smmap<6,>=3.0.1 Downloading smmap-5.0.0-py3-none-any.whl (24 kB) Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.0.0->wandb) (2021.5.30) Requirement already satisfied: charset-normalizer~=2.0.0 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.0.0->wandb) (2.0.8) Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.0.0->wandb) (2.10) Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.0.0->wandb) (1.26.6) Requirement already satisfied: termcolor<2.0.0,>=1.1.0 in /usr/local/lib/python3.7/dist-packages (from yaspin>=1.0.0->wandb) (1.1.0) Building wheels for collected packages: subprocess32, pathtools Building wheel for subprocess32 (setup.py) ... done Created wheel for subprocess32: filename=subprocess32-3.5.4-py3-none-any.whl size=6502 sha256=c4f0c8bbf3ee692fdadc4cdfb644bc95bde858c614a6f9e1aee842b26790c532 Stored in directory: /root/.cache/pip/wheels/50/ca/fa/8fca8d246e64f19488d07567547ddec8eb084e8c0d7a59226a Building wheel for pathtools (setup.py) ... done Created wheel for pathtools: filename=pathtools-0.1.2-py3-none-any.whl size=8807 sha256=3b1c5ca3314ab3744af7220119e9ee81f68fac4c126ef6e8344ad5b8b65d7c59 Stored in directory: /root/.cache/pip/wheels/3e/31/09/fa59cef12cdcfecc627b3d24273699f390e71828921b2cbba2 Successfully built subprocess32 pathtools Installing collected packages: smmap, gitdb, yaspin, subprocess32, shortuuid, sentry-sdk, pathtools, GitPython, docker-pycreds, configparser, wandb Successfully installed GitPython-3.1.24 configparser-5.2.0 docker-pycreds-0.4.0 gitdb-4.0.9 pathtools-0.1.2 sentry-sdk-1.5.1 shortuuid-1.0.8 smmap-5.0.0 subprocess32-3.5.4 wandb-0.12.7 yaspin-2.1.0 wandb: (1) Create a W&B account wandb: (2) Use an existing W&B account wandb: (3) Don't visualize my results wandb: Enter your choice: (30 second timeout) 2 wandb: You chose 'Use an existing W&B account' wandb: You can find your API key in your browser here: https://wandb.ai/authorize wandb: Paste an API key from your profile and hit enter, or press ctrl+c to quit: wandb: Appending key for api.wandb.ai to your netrc file: /root/.netrc train: weights=yolov5s.pt, cfg=, data=/content/datasets/Visikom_PA03-1/data.yaml, hyp=data/hyps/hyp.scratch.yaml, epochs=150, batch_size=16, imgsz=416, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, evolve=None, bucket=, cache=ram, image_weights=False, device=, multi_scale=False, single_cls=False, adam=False, sync_bn=False, workers=8, project=runs/train, name=exp, exist_ok=False, quad=False, linear_lr=False, label_smoothing=0.0, patience=100, freeze=0, save_period=-1, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest github: up to date with https://github.com/ultralytics/yolov5 ✅ YOLOv5 🚀 v6.0-147-g628817d torch 1.10.0+cu111 CUDA:0 (Tesla K80, 11441MiB) hyperparameters: lr0=0.01, lrf=0.1, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0 TensorBoard: Start with 'tensorboard --logdir runs/train', view at http://localhost:6006/ wandb: Currently logged in as: lordronz (use `wandb login --relogin` to force relogin) wandb: Tracking run with wandb version 0.12.7 wandb: Syncing run major-shadow-1 wandb: ⭐️ View project at https://wandb.ai/lordronz/YOLOv5 wandb: 🚀 View run at https://wandb.ai/lordronz/YOLOv5/runs/3j8heu3j wandb: Run data is saved locally in /content/yolov5/wandb/run-20211216_101614-3j8heu3j wandb: Run `wandb offline` to turn off syncing. Overriding model.yaml nc=80 with nc=2 from n params module arguments 0 -1 1 3520 models.common.Conv [3, 32, 6, 2, 2] 1 -1 1 18560 models.common.Conv [32, 64, 3, 2] 2 -1 1 18816 models.common.C3 [64, 64, 1] 3 -1 1 73984 models.common.Conv [64, 128, 3, 2] 4 -1 2 115712 models.common.C3 [128, 128, 2] 5 -1 1 295424 models.common.Conv [128, 256, 3, 2] 6 -1 3 625152 models.common.C3 [256, 256, 3] 7 -1 1 1180672 models.common.Conv [256, 512, 3, 2] 8 -1 1 1182720 models.common.C3 [512, 512, 1] 9 -1 1 656896 models.common.SPPF [512, 512, 5] 10 -1 1 131584 models.common.Conv [512, 256, 1, 1] 11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 12 [-1, 6] 1 0 models.common.Concat [1] 13 -1 1 361984 models.common.C3 [512, 256, 1, False] 14 -1 1 33024 models.common.Conv [256, 128, 1, 1] 15 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 16 [-1, 4] 1 0 models.common.Concat [1] 17 -1 1 90880 models.common.C3 [256, 128, 1, False] 18 -1 1 147712 models.common.Conv [128, 128, 3, 2] 19 [-1, 14] 1 0 models.common.Concat [1] 20 -1 1 296448 models.common.C3 [256, 256, 1, False] 21 -1 1 590336 models.common.Conv [256, 256, 3, 2] 22 [-1, 10] 1 0 models.common.Concat [1] 23 -1 1 1182720 models.common.C3 [512, 512, 1, False] 24 [17, 20, 23] 1 18879 models.yolo.Detect [2, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]] Model Summary: 270 layers, 7025023 parameters, 7025023 gradients, 15.9 GFLOPs Transferred 343/349 items from yolov5s.pt Scaled weight_decay = 0.0005 optimizer: SGD with parameter groups 57 weight, 60 weight (no decay), 60 bias albumentations: version 1.0.3 required by YOLOv5, but version 0.1.12 is currently installed train: Scanning '/content/datasets/Visikom_PA03-1/train/labels' images and labels...1260 found, 0 missing, 1 empty, 0 corrupted: 100% 1260/1260 [00:00<00:00, 1438.57it/s] train: New cache created: /content/datasets/Visikom_PA03-1/train/labels.cache train: Caching images (0.7GB ram): 100% 1260/1260 [00:03<00:00, 343.51it/s] val: Scanning '/content/datasets/Visikom_PA03-1/valid/labels' images and labels...360 found, 0 missing, 1 empty, 0 corrupted: 100% 360/360 [00:00<00:00, 627.37it/s] val: New cache created: /content/datasets/Visikom_PA03-1/valid/labels.cache val: Caching images (0.2GB ram): 100% 360/360 [00:01<00:00, 343.65it/s] Plotting labels to runs/train/exp3/labels.jpg... AutoAnchor: 2.82 anchors/target, 1.000 Best Possible Recall (BPR). Current anchors are a good fit to dataset ✅ Image sizes 416 train, 416 val Using 2 dataloader workers Logging results to runs/train/exp3 Starting training for 150 epochs... Epoch gpu_mem box obj cls labels img_size 0/149 1.41G 0.08737 0.02249 0.0261 26 416: 100% 79/79 [00:47<00:00, 1.67it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:05<00:00, 2.15it/s] all 360 359 0.297 0.47 0.321 0.137 Epoch gpu_mem box obj cls labels img_size 1/149 1.62G 0.05617 0.02208 0.02268 31 416: 100% 79/79 [00:44<00:00, 1.77it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.42it/s] all 360 359 0.592 0.721 0.69 0.408 Epoch gpu_mem box obj cls labels img_size 2/149 1.62G 0.04776 0.01867 0.02015 32 416: 100% 79/79 [00:43<00:00, 1.80it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.68it/s] all 360 359 0.679 0.766 0.782 0.432 Epoch gpu_mem box obj cls labels img_size 3/149 1.62G 0.04634 0.01718 0.01396 32 416: 100% 79/79 [00:43<00:00, 1.81it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.69it/s] all 360 359 0.81 0.844 0.871 0.493 Epoch gpu_mem box obj cls labels img_size 4/149 1.62G 0.04274 0.0172 0.01237 40 416: 100% 79/79 [00:43<00:00, 1.81it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.71it/s] all 360 359 0.916 0.91 0.963 0.554 Epoch gpu_mem box obj cls labels img_size 5/149 1.62G 0.04086 0.01659 0.0101 31 416: 100% 79/79 [00:43<00:00, 1.81it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.74it/s] all 360 359 0.888 0.892 0.957 0.576 Epoch gpu_mem box obj cls labels img_size 6/149 1.62G 0.04176 0.01572 0.01166 23 416: 100% 79/79 [00:43<00:00, 1.82it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.74it/s] all 360 359 0.865 0.914 0.909 0.45 Epoch gpu_mem box obj cls labels img_size 7/149 1.62G 0.03997 0.01577 0.009407 33 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.71it/s] all 360 359 0.855 0.936 0.93 0.598 Epoch gpu_mem box obj cls labels img_size 8/149 1.62G 0.03879 0.01694 0.01275 40 416: 100% 79/79 [00:43<00:00, 1.82it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.68it/s] all 360 359 0.886 0.819 0.878 0.456 Epoch gpu_mem box obj cls labels img_size 9/149 1.62G 0.03835 0.01663 0.01203 38 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.72it/s] all 360 359 0.75 0.697 0.778 0.385 Epoch gpu_mem box obj cls labels img_size 10/149 1.62G 0.03959 0.0167 0.01182 33 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.71it/s] all 360 359 0.935 0.927 0.955 0.466 Epoch gpu_mem box obj cls labels img_size 11/149 1.62G 0.03981 0.01662 0.0118 24 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.71it/s] all 360 359 0.874 0.888 0.938 0.552 Epoch gpu_mem box obj cls labels img_size 12/149 1.62G 0.03883 0.01742 0.01256 31 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.71it/s] all 360 359 0.555 0.611 0.571 0.223 Epoch gpu_mem box obj cls labels img_size 13/149 1.62G 0.04124 0.01666 0.0117 34 416: 100% 79/79 [00:43<00:00, 1.82it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.70it/s] all 360 359 0.807 0.694 0.772 0.363 Epoch gpu_mem box obj cls labels img_size 14/149 1.62G 0.03613 0.01686 0.01048 33 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:05<00:00, 2.11it/s] all 360 359 0.819 0.835 0.862 0.468 Epoch gpu_mem box obj cls labels img_size 15/149 1.62G 0.0365 0.01643 0.01068 31 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.73it/s] all 360 359 0.9 0.862 0.897 0.537 Epoch gpu_mem box obj cls labels img_size 16/149 1.62G 0.03537 0.01616 0.01032 28 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.71it/s] all 360 359 0.857 0.891 0.89 0.539 Epoch gpu_mem box obj cls labels img_size 17/149 1.62G 0.03485 0.01661 0.01113 39 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.72it/s] all 360 359 0.841 0.835 0.861 0.498 Epoch gpu_mem box obj cls labels img_size 18/149 1.62G 0.03384 0.01621 0.009891 31 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.73it/s] all 360 359 0.861 0.89 0.928 0.504 Epoch gpu_mem box obj cls labels img_size 19/149 1.62G 0.03192 0.01615 0.008882 35 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.72it/s] all 360 359 0.931 0.911 0.948 0.523 Epoch gpu_mem box obj cls labels img_size 20/149 1.62G 0.03336 0.01566 0.01012 30 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.73it/s] all 360 359 0.917 0.936 0.964 0.585 Epoch gpu_mem box obj cls labels img_size 21/149 1.62G 0.03161 0.01565 0.009046 30 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.70it/s] all 360 359 0.758 0.713 0.79 0.422 Epoch gpu_mem box obj cls labels img_size 22/149 1.62G 0.03118 0.01556 0.008691 33 416: 100% 79/79 [00:43<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.74it/s] all 360 359 0.937 0.908 0.949 0.605 Epoch gpu_mem box obj cls labels img_size 23/149 1.62G 0.03208 0.01551 0.01003 36 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.72it/s] all 360 359 0.924 0.916 0.949 0.596 Epoch gpu_mem box obj cls labels img_size 24/149 1.62G 0.03189 0.01551 0.009232 28 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.74it/s] all 360 359 0.944 0.913 0.96 0.604 Epoch gpu_mem box obj cls labels img_size 25/149 1.62G 0.03094 0.01566 0.009471 34 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.73it/s] all 360 359 0.92 0.935 0.947 0.593 Epoch gpu_mem box obj cls labels img_size 26/149 1.62G 0.03172 0.01525 0.009872 28 416: 100% 79/79 [00:43<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.74it/s] all 360 359 0.931 0.941 0.964 0.613 Epoch gpu_mem box obj cls labels img_size 27/149 1.62G 0.03058 0.01543 0.008616 30 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.74it/s] all 360 359 0.954 0.936 0.968 0.644 Epoch gpu_mem box obj cls labels img_size 28/149 1.62G 0.03095 0.01539 0.007603 31 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.72it/s] all 360 359 0.969 0.955 0.977 0.65 Epoch gpu_mem box obj cls labels img_size 29/149 1.62G 0.03067 0.01533 0.008276 22 416: 100% 79/79 [00:42<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:05<00:00, 2.12it/s] all 360 359 0.955 0.947 0.965 0.63 Epoch gpu_mem box obj cls labels img_size 30/149 1.62G 0.02861 0.01475 0.007799 31 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.72it/s] all 360 359 0.955 0.906 0.965 0.596 Epoch gpu_mem box obj cls labels img_size 31/149 1.62G 0.02922 0.01482 0.008749 29 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.75it/s] all 360 359 0.983 0.95 0.978 0.638 Epoch gpu_mem box obj cls labels img_size 32/149 1.62G 0.03008 0.01488 0.007603 35 416: 100% 79/79 [00:43<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.74it/s] all 360 359 0.917 0.903 0.944 0.582 Epoch gpu_mem box obj cls labels img_size 33/149 1.62G 0.02989 0.01488 0.007921 28 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.72it/s] all 360 359 0.959 0.93 0.971 0.637 Epoch gpu_mem box obj cls labels img_size 34/149 1.62G 0.02913 0.01509 0.008465 33 416: 100% 79/79 [00:43<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.74it/s] all 360 359 0.96 0.947 0.974 0.612 Epoch gpu_mem box obj cls labels img_size 35/149 1.62G 0.02787 0.01509 0.008867 33 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.71it/s] all 360 359 0.919 0.939 0.965 0.607 Epoch gpu_mem box obj cls labels img_size 36/149 1.62G 0.02961 0.01515 0.008456 35 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.71it/s] all 360 359 0.927 0.933 0.964 0.551 Epoch gpu_mem box obj cls labels img_size 37/149 1.62G 0.02832 0.015 0.007445 28 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.73it/s] all 360 359 0.923 0.914 0.942 0.593 Epoch gpu_mem box obj cls labels img_size 38/149 1.62G 0.02999 0.01549 0.008603 29 416: 100% 79/79 [00:43<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.73it/s] all 360 359 0.936 0.955 0.97 0.637 Epoch gpu_mem box obj cls labels img_size 39/149 1.62G 0.02762 0.0148 0.008099 40 416: 100% 79/79 [00:43<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.75it/s] all 360 359 0.954 0.94 0.966 0.659 Epoch gpu_mem box obj cls labels img_size 40/149 1.62G 0.02832 0.01501 0.008204 32 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.74it/s] all 360 359 0.936 0.939 0.964 0.636 Epoch gpu_mem box obj cls labels img_size 41/149 1.62G 0.0294 0.01469 0.00668 33 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.71it/s] all 360 359 0.955 0.955 0.969 0.654 Epoch gpu_mem box obj cls labels img_size 42/149 1.62G 0.02852 0.01446 0.006934 29 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.73it/s] all 360 359 0.952 0.969 0.982 0.66 Epoch gpu_mem box obj cls labels img_size 43/149 1.62G 0.0271 0.01424 0.007107 26 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.71it/s] all 360 359 0.952 0.94 0.976 0.642 Epoch gpu_mem box obj cls labels img_size 44/149 1.62G 0.02691 0.01452 0.00832 27 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:05<00:00, 2.16it/s] all 360 359 0.962 0.936 0.972 0.63 Epoch gpu_mem box obj cls labels img_size 45/149 1.62G 0.02767 0.01462 0.006796 31 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.74it/s] all 360 359 0.971 0.948 0.978 0.644 Epoch gpu_mem box obj cls labels img_size 46/149 1.62G 0.02709 0.01452 0.008858 26 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.73it/s] all 360 359 0.945 0.916 0.957 0.633 Epoch gpu_mem box obj cls labels img_size 47/149 1.62G 0.02769 0.01406 0.006499 33 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.72it/s] all 360 359 0.963 0.964 0.969 0.646 Epoch gpu_mem box obj cls labels img_size 48/149 1.62G 0.0275 0.0142 0.006776 31 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.72it/s] all 360 359 0.965 0.958 0.978 0.65 Epoch gpu_mem box obj cls labels img_size 49/149 1.62G 0.02855 0.01422 0.007241 28 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.73it/s] all 360 359 0.945 0.93 0.951 0.632 Epoch gpu_mem box obj cls labels img_size 50/149 1.62G 0.0283 0.01424 0.006446 31 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.74it/s] all 360 359 0.95 0.955 0.972 0.649 Epoch gpu_mem box obj cls labels img_size 51/149 1.62G 0.02732 0.01434 0.006851 38 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.75it/s] all 360 359 0.988 0.964 0.982 0.673 Epoch gpu_mem box obj cls labels img_size 52/149 1.62G 0.02799 0.01462 0.006692 32 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.71it/s] all 360 359 0.98 0.94 0.98 0.645 Epoch gpu_mem box obj cls labels img_size 53/149 1.62G 0.02623 0.01421 0.007056 32 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.76it/s] all 360 359 0.971 0.964 0.981 0.675 Epoch gpu_mem box obj cls labels img_size 54/149 1.62G 0.0274 0.01434 0.00672 38 416: 100% 79/79 [00:43<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.74it/s] all 360 359 0.977 0.951 0.978 0.648 Epoch gpu_mem box obj cls labels img_size 55/149 1.62G 0.02657 0.01353 0.00648 23 416: 100% 79/79 [00:42<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.74it/s] all 360 359 0.955 0.959 0.976 0.668 Epoch gpu_mem box obj cls labels img_size 56/149 1.62G 0.02664 0.01416 0.006136 32 416: 100% 79/79 [00:43<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.75it/s] all 360 359 0.972 0.953 0.979 0.659 Epoch gpu_mem box obj cls labels img_size 57/149 1.62G 0.02602 0.01401 0.005861 31 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.74it/s] all 360 359 0.974 0.942 0.98 0.628 Epoch gpu_mem box obj cls labels img_size 58/149 1.62G 0.02547 0.01386 0.00736 30 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.73it/s] all 360 359 0.961 0.955 0.979 0.661 Epoch gpu_mem box obj cls labels img_size 59/149 1.62G 0.02651 0.01426 0.00724 37 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:05<00:00, 2.16it/s] all 360 359 0.949 0.939 0.966 0.624 Epoch gpu_mem box obj cls labels img_size 60/149 1.62G 0.02794 0.01434 0.007534 32 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.75it/s] all 360 359 0.963 0.958 0.977 0.675 Epoch gpu_mem box obj cls labels img_size 61/149 1.62G 0.02592 0.0143 0.007021 32 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.73it/s] all 360 359 0.976 0.953 0.971 0.661 Epoch gpu_mem box obj cls labels img_size 62/149 1.62G 0.0263 0.01408 0.00603 38 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.70it/s] all 360 359 0.964 0.957 0.982 0.642 Epoch gpu_mem box obj cls labels img_size 63/149 1.62G 0.02663 0.01429 0.007677 35 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.75it/s] all 360 359 0.977 0.963 0.979 0.652 Epoch gpu_mem box obj cls labels img_size 64/149 1.62G 0.02621 0.01432 0.006186 37 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.73it/s] all 360 359 0.978 0.961 0.986 0.651 Epoch gpu_mem box obj cls labels img_size 65/149 1.62G 0.02639 0.01381 0.006864 29 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.72it/s] all 360 359 0.964 0.953 0.98 0.669 Epoch gpu_mem box obj cls labels img_size 66/149 1.62G 0.02621 0.01408 0.007122 35 416: 100% 79/79 [00:43<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.75it/s] all 360 359 0.982 0.98 0.989 0.674 Epoch gpu_mem box obj cls labels img_size 67/149 1.62G 0.02443 0.01354 0.005236 38 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.73it/s] all 360 359 0.977 0.975 0.991 0.68 Epoch gpu_mem box obj cls labels img_size 68/149 1.62G 0.02483 0.01371 0.006186 38 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.70it/s] all 360 359 0.954 0.978 0.984 0.653 Epoch gpu_mem box obj cls labels img_size 69/149 1.62G 0.02532 0.01371 0.007711 24 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.74it/s] all 360 359 0.973 0.966 0.982 0.684 Epoch gpu_mem box obj cls labels img_size 70/149 1.62G 0.02365 0.01356 0.005834 38 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.72it/s] all 360 359 0.974 0.954 0.979 0.683 Epoch gpu_mem box obj cls labels img_size 71/149 1.62G 0.02526 0.01392 0.005784 36 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.74it/s] all 360 359 0.972 0.969 0.981 0.662 Epoch gpu_mem box obj cls labels img_size 72/149 1.62G 0.02485 0.01412 0.00564 35 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.74it/s] all 360 359 0.956 0.964 0.974 0.649 Epoch gpu_mem box obj cls labels img_size 73/149 1.62G 0.02547 0.01392 0.005849 28 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.74it/s] all 360 359 0.964 0.961 0.98 0.689 Epoch gpu_mem box obj cls labels img_size 74/149 1.62G 0.02515 0.01356 0.006771 31 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:05<00:00, 2.16it/s] all 360 359 0.98 0.957 0.98 0.642 Epoch gpu_mem box obj cls labels img_size 75/149 1.62G 0.02445 0.01375 0.005435 24 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.73it/s] all 360 359 0.982 0.972 0.984 0.677 Epoch gpu_mem box obj cls labels img_size 76/149 1.62G 0.02377 0.01359 0.004664 29 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.76it/s] all 360 359 0.988 0.966 0.984 0.699 Epoch gpu_mem box obj cls labels img_size 77/149 1.62G 0.02474 0.01333 0.005772 27 416: 100% 79/79 [00:42<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.72it/s] all 360 359 0.98 0.964 0.983 0.682 Epoch gpu_mem box obj cls labels img_size 78/149 1.62G 0.02427 0.01311 0.005514 37 416: 100% 79/79 [00:42<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.74it/s] all 360 359 0.971 0.967 0.978 0.708 Epoch gpu_mem box obj cls labels img_size 79/149 1.62G 0.02485 0.01369 0.006131 32 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.73it/s] all 360 359 0.988 0.966 0.984 0.701 Epoch gpu_mem box obj cls labels img_size 80/149 1.62G 0.02485 0.01319 0.005135 27 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.73it/s] all 360 359 0.963 0.964 0.974 0.685 Epoch gpu_mem box obj cls labels img_size 81/149 1.62G 0.02408 0.01308 0.004953 36 416: 100% 79/79 [00:43<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.74it/s] all 360 359 0.987 0.975 0.987 0.682 Epoch gpu_mem box obj cls labels img_size 82/149 1.62G 0.02287 0.01283 0.004554 33 416: 100% 79/79 [00:42<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.73it/s] all 360 359 0.97 0.98 0.985 0.703 Epoch gpu_mem box obj cls labels img_size 83/149 1.62G 0.02359 0.01324 0.005014 33 416: 100% 79/79 [00:43<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.70it/s] all 360 359 0.977 0.97 0.98 0.702 Epoch gpu_mem box obj cls labels img_size 84/149 1.62G 0.02424 0.01314 0.005383 31 416: 100% 79/79 [00:43<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.74it/s] all 360 359 0.972 0.962 0.982 0.676 Epoch gpu_mem box obj cls labels img_size 85/149 1.62G 0.02454 0.01269 0.004688 32 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.73it/s] all 360 359 0.974 0.955 0.979 0.67 Epoch gpu_mem box obj cls labels img_size 86/149 1.62G 0.02395 0.01342 0.005318 35 416: 100% 79/79 [00:43<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.73it/s] all 360 359 0.958 0.975 0.983 0.695 Epoch gpu_mem box obj cls labels img_size 87/149 1.62G 0.02324 0.01317 0.00584 26 416: 100% 79/79 [00:42<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.73it/s] all 360 359 0.977 0.975 0.984 0.681 Epoch gpu_mem box obj cls labels img_size 88/149 1.62G 0.02413 0.01323 0.005334 34 416: 100% 79/79 [00:42<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.72it/s] all 360 359 0.973 0.969 0.981 0.674 Epoch gpu_mem box obj cls labels img_size 89/149 1.62G 0.02446 0.01315 0.005705 29 416: 100% 79/79 [00:43<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:05<00:00, 2.17it/s] all 360 359 0.964 0.972 0.983 0.685 Epoch gpu_mem box obj cls labels img_size 90/149 1.62G 0.02435 0.01264 0.005066 26 416: 100% 79/79 [00:43<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.74it/s] all 360 359 0.96 0.961 0.977 0.7 Epoch gpu_mem box obj cls labels img_size 91/149 1.62G 0.02291 0.01307 0.004875 39 416: 100% 79/79 [00:42<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.75it/s] all 360 359 0.976 0.969 0.983 0.685 Epoch gpu_mem box obj cls labels img_size 92/149 1.62G 0.02444 0.01299 0.004825 36 416: 100% 79/79 [00:42<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.74it/s] all 360 359 0.985 0.975 0.989 0.688 Epoch gpu_mem box obj cls labels img_size 93/149 1.62G 0.0229 0.01318 0.005412 36 416: 100% 79/79 [00:42<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.72it/s] all 360 359 0.987 0.98 0.987 0.686 Epoch gpu_mem box obj cls labels img_size 94/149 1.62G 0.02302 0.01293 0.004801 34 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.75it/s] all 360 359 0.977 0.975 0.986 0.669 Epoch gpu_mem box obj cls labels img_size 95/149 1.62G 0.02396 0.01332 0.004397 36 416: 100% 79/79 [00:43<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.76it/s] all 360 359 0.956 0.978 0.98 0.685 Epoch gpu_mem box obj cls labels img_size 96/149 1.62G 0.02245 0.01288 0.005069 31 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.73it/s] all 360 359 0.975 0.971 0.977 0.676 Epoch gpu_mem box obj cls labels img_size 97/149 1.62G 0.0227 0.01285 0.004587 29 416: 100% 79/79 [00:43<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.76it/s] all 360 359 0.962 0.969 0.974 0.68 Epoch gpu_mem box obj cls labels img_size 98/149 1.62G 0.02241 0.01303 0.004517 29 416: 100% 79/79 [00:42<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.74it/s] all 360 359 0.965 0.972 0.98 0.686 Epoch gpu_mem box obj cls labels img_size 99/149 1.62G 0.0226 0.01285 0.005117 30 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.74it/s] all 360 359 0.975 0.968 0.984 0.687 Epoch gpu_mem box obj cls labels img_size 100/149 1.62G 0.02183 0.01262 0.004957 29 416: 100% 79/79 [00:43<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.69it/s] all 360 359 0.968 0.964 0.98 0.674 Epoch gpu_mem box obj cls labels img_size 101/149 1.62G 0.02288 0.01249 0.004623 26 416: 100% 79/79 [00:43<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.74it/s] all 360 359 0.988 0.972 0.986 0.676 Epoch gpu_mem box obj cls labels img_size 102/149 1.62G 0.02409 0.01275 0.004394 25 416: 100% 79/79 [00:42<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.73it/s] all 360 359 0.988 0.972 0.986 0.703 Epoch gpu_mem box obj cls labels img_size 103/149 1.62G 0.02302 0.01257 0.004585 27 416: 100% 79/79 [00:43<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.73it/s] all 360 359 0.987 0.975 0.987 0.692 Epoch gpu_mem box obj cls labels img_size 104/149 1.62G 0.02252 0.01295 0.004913 30 416: 100% 79/79 [00:42<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:05<00:00, 2.14it/s] all 360 359 0.983 0.972 0.985 0.7 Epoch gpu_mem box obj cls labels img_size 105/149 1.62G 0.02144 0.01253 0.004735 34 416: 100% 79/79 [00:42<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.73it/s] all 360 359 0.98 0.983 0.986 0.698 Epoch gpu_mem box obj cls labels img_size 106/149 1.62G 0.02168 0.01258 0.00433 35 416: 100% 79/79 [00:42<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.74it/s] all 360 359 0.98 0.98 0.989 0.692 Epoch gpu_mem box obj cls labels img_size 107/149 1.62G 0.02218 0.01276 0.00444 41 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.75it/s] all 360 359 0.989 0.978 0.988 0.703 Epoch gpu_mem box obj cls labels img_size 108/149 1.62G 0.02244 0.01288 0.00443 23 416: 100% 79/79 [00:43<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.74it/s] all 360 359 0.989 0.972 0.987 0.691 Epoch gpu_mem box obj cls labels img_size 109/149 1.62G 0.02176 0.01268 0.004351 39 416: 100% 79/79 [00:42<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.72it/s] all 360 359 0.997 0.972 0.988 0.702 Epoch gpu_mem box obj cls labels img_size 110/149 1.62G 0.02183 0.01269 0.004244 36 416: 100% 79/79 [00:42<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.75it/s] all 360 359 0.991 0.969 0.988 0.701 Epoch gpu_mem box obj cls labels img_size 111/149 1.62G 0.02146 0.01253 0.00348 28 416: 100% 79/79 [00:42<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.74it/s] all 360 359 0.994 0.975 0.988 0.695 Epoch gpu_mem box obj cls labels img_size 112/149 1.62G 0.02275 0.01286 0.004164 37 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.71it/s] all 360 359 0.991 0.975 0.988 0.708 Epoch gpu_mem box obj cls labels img_size 113/149 1.62G 0.02076 0.01225 0.003907 29 416: 100% 79/79 [00:42<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.75it/s] all 360 359 0.991 0.966 0.989 0.707 Epoch gpu_mem box obj cls labels img_size 114/149 1.62G 0.02082 0.01268 0.004174 37 416: 100% 79/79 [00:43<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.74it/s] all 360 359 0.988 0.968 0.99 0.696 Epoch gpu_mem box obj cls labels img_size 115/149 1.62G 0.02191 0.01258 0.004781 35 416: 100% 79/79 [00:43<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.73it/s] all 360 359 0.984 0.972 0.988 0.698 Epoch gpu_mem box obj cls labels img_size 116/149 1.62G 0.02202 0.01268 0.004343 34 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.74it/s] all 360 359 0.985 0.978 0.991 0.705 Epoch gpu_mem box obj cls labels img_size 117/149 1.62G 0.02202 0.01246 0.00401 34 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.74it/s] all 360 359 0.958 0.982 0.98 0.702 Epoch gpu_mem box obj cls labels img_size 118/149 1.62G 0.02192 0.01251 0.00479 29 416: 100% 79/79 [00:42<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.73it/s] all 360 359 0.985 0.969 0.986 0.702 Epoch gpu_mem box obj cls labels img_size 119/149 1.62G 0.0219 0.01239 0.005176 33 416: 100% 79/79 [00:42<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:05<00:00, 2.17it/s] all 360 359 0.988 0.964 0.985 0.682 Epoch gpu_mem box obj cls labels img_size 120/149 1.62G 0.02184 0.01245 0.005212 30 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.74it/s] all 360 359 0.991 0.975 0.987 0.698 Epoch gpu_mem box obj cls labels img_size 121/149 1.62G 0.02065 0.01269 0.003958 33 416: 100% 79/79 [00:43<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.72it/s] all 360 359 0.983 0.974 0.988 0.704 Epoch gpu_mem box obj cls labels img_size 122/149 1.62G 0.02057 0.01247 0.005235 31 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.70it/s] all 360 359 0.985 0.978 0.989 0.695 Epoch gpu_mem box obj cls labels img_size 123/149 1.62G 0.02204 0.01298 0.004128 24 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.74it/s] all 360 359 0.991 0.978 0.989 0.704 Epoch gpu_mem box obj cls labels img_size 124/149 1.62G 0.02168 0.01226 0.004521 23 416: 100% 79/79 [00:43<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.71it/s] all 360 359 0.994 0.972 0.987 0.705 Epoch gpu_mem box obj cls labels img_size 125/149 1.62G 0.02112 0.01225 0.004018 35 416: 100% 79/79 [00:43<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.75it/s] all 360 359 0.988 0.972 0.989 0.698 Epoch gpu_mem box obj cls labels img_size 126/149 1.62G 0.01991 0.0123 0.003286 36 416: 100% 79/79 [00:42<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.71it/s] all 360 359 0.985 0.965 0.988 0.701 Epoch gpu_mem box obj cls labels img_size 127/149 1.62G 0.02063 0.01242 0.003427 34 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.71it/s] all 360 359 0.982 0.966 0.987 0.703 Epoch gpu_mem box obj cls labels img_size 128/149 1.62G 0.02077 0.01225 0.004466 31 416: 100% 79/79 [00:43<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.72it/s] all 360 359 0.974 0.962 0.98 0.69 Epoch gpu_mem box obj cls labels img_size 129/149 1.62G 0.02104 0.01258 0.004293 35 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.74it/s] all 360 359 0.985 0.975 0.987 0.708 Epoch gpu_mem box obj cls labels img_size 130/149 1.62G 0.02099 0.0123 0.005538 35 416: 100% 79/79 [00:42<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.72it/s] all 360 359 0.982 0.966 0.985 0.692 Epoch gpu_mem box obj cls labels img_size 131/149 1.62G 0.0213 0.01252 0.003567 25 416: 100% 79/79 [00:43<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.75it/s] all 360 359 0.974 0.969 0.984 0.686 Epoch gpu_mem box obj cls labels img_size 132/149 1.62G 0.02114 0.01254 0.004359 35 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.71it/s] all 360 359 0.985 0.975 0.989 0.71 Epoch gpu_mem box obj cls labels img_size 133/149 1.62G 0.02098 0.0121 0.003789 28 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.75it/s] all 360 359 0.984 0.972 0.989 0.718 Epoch gpu_mem box obj cls labels img_size 134/149 1.62G 0.02099 0.01211 0.004553 37 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:05<00:00, 2.18it/s] all 360 359 0.988 0.972 0.99 0.717 Epoch gpu_mem box obj cls labels img_size 135/149 1.62G 0.0204 0.01198 0.003828 36 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.73it/s] all 360 359 0.982 0.972 0.988 0.703 Epoch gpu_mem box obj cls labels img_size 136/149 1.62G 0.02085 0.01248 0.003578 35 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.70it/s] all 360 359 0.987 0.978 0.987 0.702 Epoch gpu_mem box obj cls labels img_size 137/149 1.62G 0.02018 0.01218 0.004048 26 416: 100% 79/79 [00:43<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.72it/s] all 360 359 0.987 0.972 0.989 0.71 Epoch gpu_mem box obj cls labels img_size 138/149 1.62G 0.02031 0.0123 0.00356 29 416: 100% 79/79 [00:43<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.75it/s] all 360 359 0.988 0.972 0.989 0.71 Epoch gpu_mem box obj cls labels img_size 139/149 1.62G 0.02092 0.01213 0.003891 26 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.73it/s] all 360 359 0.988 0.975 0.99 0.71 Epoch gpu_mem box obj cls labels img_size 140/149 1.62G 0.02009 0.01209 0.004039 32 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.73it/s] all 360 359 0.988 0.975 0.988 0.705 Epoch gpu_mem box obj cls labels img_size 141/149 1.62G 0.02059 0.01228 0.0038 33 416: 100% 79/79 [00:43<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.75it/s] all 360 359 0.991 0.969 0.989 0.713 Epoch gpu_mem box obj cls labels img_size 142/149 1.62G 0.02049 0.01189 0.004289 35 416: 100% 79/79 [00:42<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.73it/s] all 360 359 0.994 0.972 0.99 0.715 Epoch gpu_mem box obj cls labels img_size 143/149 1.62G 0.01981 0.01201 0.003328 27 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.71it/s] all 360 359 0.991 0.972 0.989 0.703 Epoch gpu_mem box obj cls labels img_size 144/149 1.62G 0.02104 0.01206 0.00451 32 416: 100% 79/79 [00:43<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.75it/s] all 360 359 0.99 0.978 0.987 0.707 Epoch gpu_mem box obj cls labels img_size 145/149 1.62G 0.02065 0.01219 0.004047 35 416: 100% 79/79 [00:43<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.76it/s] all 360 359 0.979 0.978 0.987 0.697 Epoch gpu_mem box obj cls labels img_size 146/149 1.62G 0.02067 0.01179 0.004503 29 416: 100% 79/79 [00:43<00:00, 1.84it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.74it/s] all 360 359 0.987 0.977 0.988 0.695 Epoch gpu_mem box obj cls labels img_size 147/149 1.62G 0.02039 0.01239 0.004225 29 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.74it/s] all 360 359 0.982 0.975 0.986 0.7 Epoch gpu_mem box obj cls labels img_size 148/149 1.62G 0.02021 0.01201 0.003914 30 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00, 2.72it/s] all 360 359 0.985 0.975 0.987 0.704 Epoch gpu_mem box obj cls labels img_size 149/149 1.62G 0.02054 0.01199 0.003628 38 416: 100% 79/79 [00:43<00:00, 1.83it/s] Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:05<00:00, 2.15it/s] all 360 359 0.982 0.978 0.987 0.694 150 epochs completed in 2.008 hours. Optimizer stripped from runs/train/exp3/weights/last.pt, 14.3MB Optimizer stripped from runs/train/exp3/weights/best.pt, 14.3MB Validating runs/train/exp3/weights/best.pt... Fusing layers... Model Summary: 213 layers, 7015519 parameters, 0 gradients, 15.8 GFLOPs Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 12/12 [00:07<00:00, 1.54it/s] all 360 359 0.984 0.972 0.989 0.718 cheetah 360 180 0.997 1 0.995 0.783 hyena 360 179 0.971 0.944 0.983 0.653 wandb: Waiting for W&B process to finish, PID 417... (success). wandb: wandb: Run history: wandb: metrics/mAP_0.5 ▁▅▇▇▆▇▇▇█▇▇██▇██████████████████████████ wandb: metrics/mAP_0.5:0.95 ▁▃▅▄▄▄▅▆▆▅▅▇▆▆▇▆▇▇▇▇▇██▇▇▇▇▇█▇█████████▇ wandb: metrics/precision ▁▅▆▆▆▇▇▇█▇▇▇█▇███▇█▇█████▇█████▇████████ wandb: metrics/recall ▁▄▇▅▅▆▆▇▇▇▆▇▇▇█▇▇▇█▇████████████████████ wandb: train/box_loss █▆▅▅▄▃▃▃▃▂▃▃▂▃▂▂▂▂▂▂▂▂▂▂▂▂▁▂▁▁▁▁▁▁▁▁▁▁▁▁ wandb: train/cls_loss █▅▃▄▄▃▃▃▃▃▂▂▂▂▂▂▂▂▃▂▂▂▂▂▂▁▂▁▁▁▁▁▁▁▁▁▁▁▁▁ wandb: train/obj_loss █▅▄▄▄▄▃▃▃▃▃▃▃▃▃▂▃▂▂▂▂▂▂▂▂▂▂▁▂▁▁▁▁▁▁▁▁▁▁▁ wandb: val/box_loss ██▅▇▇▆▃▃▃▃▃▂▂▄▂▂▃▂▂▂▂▁▂▁▂▂▂▂▂▂▁▁▁▂▂▂▂▂▂▂ wandb: val/cls_loss █▃▂▂▆▂▂▁▁▁▂▁▁▂▁▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁ wandb: val/obj_loss █▄▂▃▃▃▂▂▂▃▂▂▂▂▁▂▁▂▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁ wandb: x/lr0 ▁▃▅█████▇▇▇▇▇▆▆▆▆▅▅▅▅▄▄▄▃▃▃▃▂▂▂▂▂▂▁▁▁▁▁▁ wandb: x/lr1 ▁▃▅█████▇▇▇▇▇▆▆▆▆▅▅▅▅▄▄▄▃▃▃▃▂▂▂▂▂▂▁▁▁▁▁▁ wandb: x/lr2 █▇▄▂▂▂▂▂▂▂▂▂▂▂▂▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁ wandb: wandb: Run summary: wandb: metrics/mAP_0.5 0.98723 wandb: metrics/mAP_0.5:0.95 0.69447 wandb: metrics/precision 0.98229 wandb: metrics/recall 0.97765 wandb: train/box_loss 0.02054 wandb: train/cls_loss 0.00363 wandb: train/obj_loss 0.01199 wandb: val/box_loss 0.02168 wandb: val/cls_loss 5e-05 wandb: val/obj_loss 0.00354 wandb: x/lr0 0.001 wandb: x/lr1 0.001 wandb: x/lr2 0.001 wandb: wandb: Synced 5 W&B file(s), 337 media file(s), 1 artifact file(s) and 0 other file(s) wandb: Synced major-shadow-1: https://wandb.ai/lordronz/YOLOv5/runs/3j8heu3j wandb: Find logs at: ./wandb/run-20211216_101614-3j8heu3j/logs/debug.log wandb: Results saved to runs/train/exp3
Evaluate Custom YOLOv5 Detector Performance
Training losses and performance metrics are saved to Tensorboard and also to a logfile.
If you are new to these metrics, the one you want to focus on is mAP_0.5
- learn more about mean average precision here.
# Launch after you have started training
# logs save in the folder "runs"
%load_ext tensorboard
%tensorboard --logdir runs
!python detect.py --weights runs/train/exp3/weights/best.pt --img 416 --conf 0.1 --source {dataset.location}/test/images
detect: weights=['runs/train/exp3/weights/best.pt'], source=/content/datasets/Visikom_PA03-1/test/images, imgsz=[416, 416], conf_thres=0.1, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/detect, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False YOLOv5 🚀 v6.0-147-g628817d torch 1.10.0+cu111 CUDA:0 (Tesla K80, 11441MiB) Fusing layers... Model Summary: 213 layers, 7015519 parameters, 0 gradients, 15.8 GFLOPs image 1/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_005_resized_jpg.rf.63051f6977b3f3c0de7a7ca2d0eb857f.jpg: 416x416 1 cheetah, Done. (0.028s) image 2/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_006_resized_jpg.rf.dc5b98e584c4e754af38c5da0642792d.jpg: 416x416 1 cheetah, Done. (0.028s) image 3/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_015_resized_jpg.rf.ebea7c18d01ef8bd591bac856ba7f35d.jpg: 416x416 1 cheetah, Done. (0.028s) image 4/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_025_resized_jpg.rf.c512cef7dc1757ea2afa53afeadb7e3b.jpg: 416x416 1 cheetah, Done. (0.028s) image 5/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_027_resized_jpg.rf.cbad621e440ec2877116ad89fa09d9cb.jpg: 416x416 1 cheetah, Done. (0.028s) image 6/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_032_resized_jpg.rf.081e952ba959c9c1b40b944d5b6ef476.jpg: 416x416 1 cheetah, Done. (0.028s) image 7/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_034_resized_jpg.rf.d9580c4e7b077e6d932b21d779eafc24.jpg: 416x416 1 cheetah, Done. (0.028s) image 8/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_036_resized_jpg.rf.3da3f5a5142795088f3f1ebeaa93b9f4.jpg: 416x416 1 cheetah, Done. (0.028s) image 9/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_050_resized_jpg.rf.873f1c85b5bf5f7b2fa70d51e47c6710.jpg: 416x416 1 cheetah, Done. (0.028s) image 10/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_054_resized_jpg.rf.6456cf429d68d5cbe8310815996c438f.jpg: 416x416 1 cheetah, Done. (0.028s) image 11/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_073_resized_jpg.rf.ec0f494f708f2e70497c24e1aeafb25a.jpg: 416x416 1 cheetah, 1 hyena, Done. (0.028s) image 12/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_095_resized_jpg.rf.aca36a5afa428ce867eef5e3c54c6010.jpg: 416x416 1 cheetah, Done. (0.028s) image 13/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_099_resized_jpg.rf.0450c277400afaa6551c76219d05d177.jpg: 416x416 1 cheetah, Done. (0.028s) image 14/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_118_resized_jpg.rf.dcc6154de15bc3fd6478c71d205a07fd.jpg: 416x416 1 cheetah, Done. (0.028s) image 15/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_121_resized_jpg.rf.a96a3c01751ee8926e0a2db5ff5c2772.jpg: 416x416 1 cheetah, Done. (0.028s) image 16/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_123_resized_jpg.rf.a7c96ba143caa2fb5e18a2f61996fc40.jpg: 416x416 1 cheetah, Done. (0.028s) image 17/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_125_resized_jpg.rf.a9edf11b4a4704c32d814386844d6805.jpg: 416x416 1 cheetah, Done. (0.028s) image 18/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_134_resized_jpg.rf.8adfc24cd4d80964d4815d10c6719c56.jpg: 416x416 1 cheetah, Done. (0.028s) image 19/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_146_resized_jpg.rf.76c073af5ba474e584508b7740c6b64c.jpg: 416x416 1 cheetah, Done. (0.028s) image 20/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_147_resized_jpg.rf.366e021c2612b1b8abb0834de478ce84.jpg: 416x416 1 cheetah, Done. (0.027s) image 21/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_161_resized_jpg.rf.3323e6c32711ab18f1588c2abb2f030b.jpg: 416x416 1 cheetah, Done. (0.027s) image 22/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_165_resized_jpg.rf.2643aac0d5b01d39f6753f97323c4a74.jpg: 416x416 1 cheetah, Done. (0.028s) image 23/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_196_resized_jpg.rf.3d59a3e10d2bb28fac9e7c2f2206c928.jpg: 416x416 1 cheetah, Done. (0.027s) image 24/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_197_resized_jpg.rf.dc5df696cba07b9c6433b94431a82c4e.jpg: 416x416 1 cheetah, Done. (0.028s) image 25/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_215_resized_jpg.rf.f3b9f5d9e36fa21535dffedbc807b826.jpg: 416x416 1 cheetah, Done. (0.028s) image 26/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_222_resized_jpg.rf.0dbc89bb96bb48d9b337ad7cf1e8c71a.jpg: 416x416 1 cheetah, Done. (0.028s) image 27/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_229_resized_jpg.rf.a14e4f92d9f043f4867bcbc1cf005ab3.jpg: 416x416 1 cheetah, Done. (0.028s) image 28/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_261_resized_jpg.rf.c9bb1109a4053eed6388f86e389ff59a.jpg: 416x416 1 cheetah, Done. (0.028s) image 29/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_269_resized_jpg.rf.b8c784c25695ca4e04c0e343fe8517a6.jpg: 416x416 1 cheetah, Done. (0.027s) image 30/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_275_resized_jpg.rf.ed6a898edcfe3003d5cf8c0452a29472.jpg: 416x416 1 cheetah, Done. (0.028s) image 31/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_303_resized_jpg.rf.8d608f02aa58cad13f41e854e9e5861d.jpg: 416x416 1 cheetah, Done. (0.028s) image 32/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_323_resized_jpg.rf.cb89dd3b86ec343c811e6fddbb596bde.jpg: 416x416 2 cheetahs, Done. (0.027s) image 33/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_332_resized_jpg.rf.16e01f268b84378693eb70d97ae464e5.jpg: 416x416 1 cheetah, Done. (0.027s) image 34/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_339_resized_jpg.rf.b646953b258652df9d2ac4a8ed498a8a.jpg: 416x416 1 cheetah, Done. (0.027s) image 35/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_347_resized_jpg.rf.579c2e18a9cdcc97ec55ec3869fe6f34.jpg: 416x416 1 cheetah, Done. (0.027s) image 36/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_353_resized_jpg.rf.1ad5b9c410cdfb799e2ad3fc8614984b.jpg: 416x416 1 cheetah, Done. (0.027s) image 37/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_358_resized_jpg.rf.eac92dd8cf34f8fd2e64337c766e74cf.jpg: 416x416 1 cheetah, Done. (0.027s) image 38/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_363_resized_jpg.rf.95c2a38fd8bc59b794334ca6d0d957f7.jpg: 416x416 1 cheetah, Done. (0.027s) image 39/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_373_resized_jpg.rf.d4d2d88b46f73e786cc93e02d551cf29.jpg: 416x416 1 cheetah, Done. (0.027s) image 40/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_378_resized_jpg.rf.ca53e4392d9a87e48aacce939002be04.jpg: 416x416 1 cheetah, Done. (0.027s) image 41/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_384_resized_jpg.rf.5b6dfbf22ada47e51883abccc93fac7f.jpg: 416x416 1 cheetah, Done. (0.027s) image 42/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_401_resized_jpg.rf.755d6d41877de6631fd4d05d42112bd2.jpg: 416x416 1 cheetah, Done. (0.027s) image 43/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_402_resized_jpg.rf.e73afb6ccfcb93c8c52d5e282d989687.jpg: 416x416 1 cheetah, Done. (0.027s) image 44/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_431_resized_jpg.rf.407efd6135f33ca98a1cf0935632a64d.jpg: 416x416 1 cheetah, Done. (0.027s) image 45/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_438_resized_jpg.rf.60a68d972ed4d38734198272cf2c4029.jpg: 416x416 1 cheetah, Done. (0.027s) image 46/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_443_resized_jpg.rf.f687c110ef576889d29bff9c34d81344.jpg: 416x416 1 cheetah, Done. (0.027s) image 47/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_458_resized_jpg.rf.eb7686faaa117752dcf772c1a6bc7ac2.jpg: 416x416 1 cheetah, Done. (0.027s) image 48/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_489_resized_jpg.rf.de4ef86dd3e0bcd859fac6d7925b17eb.jpg: 416x416 1 cheetah, Done. (0.027s) image 49/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_492_resized_jpg.rf.09101af9f4da8145adb83ed9cd875955.jpg: 416x416 1 cheetah, Done. (0.026s) image 50/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_500_resized_jpg.rf.4d6179602039bbd0cbefb8f1d768f256.jpg: 416x416 1 cheetah, Done. (0.027s) image 51/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_515_resized_jpg.rf.d05517e77bc05389e20b491a62cac7f8.jpg: 416x416 1 cheetah, Done. (0.027s) image 52/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_519_resized_jpg.rf.b84c316069f048a7c06b0fed85f89369.jpg: 416x416 1 cheetah, Done. (0.027s) image 53/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_529_resized_jpg.rf.abed8ff727ecc14cc30f845bc04a37e0.jpg: 416x416 1 cheetah, Done. (0.027s) image 54/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_539_resized_jpg.rf.84a4652da89d26e30aa96c345398c3f0.jpg: 416x416 1 cheetah, Done. (0.027s) image 55/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_576_resized_jpg.rf.24082367a1b9af9355bcdcae6c77723f.jpg: 416x416 1 cheetah, Done. (0.027s) image 56/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_583_resized_jpg.rf.7d2f9998c403d43bb0add0ce8befc737.jpg: 416x416 1 cheetah, Done. (0.027s) image 57/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_587_resized_jpg.rf.640b57d7dd553ceb4380e2b4853049dc.jpg: 416x416 1 cheetah, Done. (0.027s) image 58/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_589_resized_jpg.rf.598d14abad1b2c238677eb24ac23e382.jpg: 416x416 1 cheetah, Done. (0.027s) image 59/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_591_resized_jpg.rf.ed9e7d816851b1f0f23094efda14f6cc.jpg: 416x416 1 cheetah, Done. (0.027s) image 60/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_599_resized_jpg.rf.e5014f9e7833dc8f82c7e9628d3ea21f.jpg: 416x416 1 cheetah, Done. (0.027s) image 61/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_602_resized_jpg.rf.d2bf304462a76ab82debd724d1e05058.jpg: 416x416 1 cheetah, Done. (0.027s) image 62/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_614_resized_jpg.rf.9c64a97b6fa5a00ecc619a47b2cdcc0b.jpg: 416x416 1 cheetah, Done. (0.027s) image 63/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_623_resized_jpg.rf.f844bbd7e68986671fbe9bcb7fa4f8f1.jpg: 416x416 1 cheetah, Done. (0.027s) image 64/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_624_resized_jpg.rf.f414da12b643d10c57f4533dc7e843da.jpg: 416x416 1 cheetah, Done. (0.027s) image 65/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_627_resized_jpg.rf.4aff71ec96fddbd3c86235d5ed6ad71f.jpg: 416x416 1 cheetah, Done. (0.027s) image 66/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_639_resized_jpg.rf.e396d7fa48c133226305de25f9114ec7.jpg: 416x416 1 cheetah, Done. (0.027s) image 67/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_645_resized_jpg.rf.8ae9ddb296dbc6d4bed191875a5632da.jpg: 416x416 1 cheetah, Done. (0.027s) image 68/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_661_resized_jpg.rf.87b388ce3063568de96402a8b84ffd81.jpg: 416x416 1 cheetah, Done. (0.027s) image 69/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_678_resized_jpg.rf.9743aeacc0d38677e47681eac1456d0c.jpg: 416x416 1 cheetah, Done. (0.027s) image 70/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_682_resized_jpg.rf.591aeab321876785fa7622836fe1fbe2.jpg: 416x416 1 cheetah, Done. (0.027s) image 71/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_691_resized_jpg.rf.b5961e317898cab3e957c6510683e310.jpg: 416x416 1 cheetah, Done. (0.027s) image 72/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_716_resized_jpg.rf.74f29c4b7225afbe75e14df4e3927845.jpg: 416x416 1 cheetah, Done. (0.026s) image 73/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_721_resized_jpg.rf.dc1cc2e07de2ed7545365d62d94c4df9.jpg: 416x416 1 cheetah, Done. (0.026s) image 74/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_728_resized_jpg.rf.440fc6395e97be80f6a2cdd17878b62c.jpg: 416x416 1 cheetah, Done. (0.026s) image 75/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_729_resized_jpg.rf.9ee063a3a217acc1b9d2f9d22a25e19e.jpg: 416x416 1 cheetah, Done. (0.026s) image 76/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_735_resized_jpg.rf.d5bdd8512fe5f4a0802c73c9b8b598f3.jpg: 416x416 1 cheetah, Done. (0.026s) image 77/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_752_resized_jpg.rf.44f1405e0febe5ee7c52a9f371c624b8.jpg: 416x416 1 cheetah, Done. (0.027s) image 78/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_754_resized_jpg.rf.a0d062f6c190e48a95c07e6295c2fb3a.jpg: 416x416 1 cheetah, Done. (0.026s) image 79/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_772_resized_jpg.rf.ecd71c228a03095ef1abc08989792cc7.jpg: 416x416 1 cheetah, Done. (0.026s) image 80/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_777_resized_jpg.rf.8a3d32da0a6a7b7fef6403f38c2db8c3.jpg: 416x416 1 cheetah, Done. (0.026s) image 81/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_782_resized_jpg.rf.0036b44d96c9feab1f66074f1be21d56.jpg: 416x416 1 cheetah, Done. (0.026s) image 82/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_787_resized_jpg.rf.8194fe836ec5876de3689c7c1854e950.jpg: 416x416 1 cheetah, Done. (0.026s) image 83/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_833_resized_jpg.rf.cc8fac66fb9754fe1a755bdcd3895fcd.jpg: 416x416 1 cheetah, Done. (0.026s) image 84/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_837_resized_jpg.rf.c32603f6c858b7c91f6653cd6dbc14f0.jpg: 416x416 1 cheetah, Done. (0.026s) image 85/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_838_resized_jpg.rf.39ce4568af414a00a7b0f3996ca24229.jpg: 416x416 1 cheetah, Done. (0.027s) image 86/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_841_resized_jpg.rf.fe77d7038f3054c491f7594460d49e05.jpg: 416x416 1 cheetah, Done. (0.026s) image 87/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_868_resized_jpg.rf.b0b124e30d2dae898a9d0667b4d68a24.jpg: 416x416 1 cheetah, Done. (0.027s) image 88/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_892_resized_jpg.rf.05a12252000caa07e117b6a4286f891c.jpg: 416x416 1 cheetah, Done. (0.026s) image 89/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_893_resized_jpg.rf.ae87fe1e1b89792aa31aec6e069f5686.jpg: 416x416 1 cheetah, Done. (0.026s) image 90/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_894_resized_jpg.rf.ef1fc54771bfcfb250fba10720294509.jpg: 416x416 1 cheetah, Done. (0.026s) image 91/180 /content/datasets/Visikom_PA03-1/test/images/hyena_004_resized_jpg.rf.fd5010d5313af6dc0d1bd73df6dda5fe.jpg: 416x416 1 hyena, Done. (0.026s) image 92/180 /content/datasets/Visikom_PA03-1/test/images/hyena_008_resized_jpg.rf.70f189d8a781bf56d91b730f09c107db.jpg: 416x416 1 hyena, Done. (0.026s) image 93/180 /content/datasets/Visikom_PA03-1/test/images/hyena_011_resized_jpg.rf.2c09a97bb06cda0bb0b9b804a9b3e578.jpg: 416x416 1 hyena, Done. (0.026s) image 94/180 /content/datasets/Visikom_PA03-1/test/images/hyena_012_resized_jpg.rf.89b83d5b20a1d53dfe464dc0f6276703.jpg: 416x416 1 hyena, Done. (0.027s) image 95/180 /content/datasets/Visikom_PA03-1/test/images/hyena_031_resized_jpg.rf.0c4a6c1021cb4caef232a533c68792ef.jpg: 416x416 1 hyena, Done. (0.027s) image 96/180 /content/datasets/Visikom_PA03-1/test/images/hyena_054_resized_jpg.rf.b5fc935ec91f4f9b0efc3b99b9a57cb5.jpg: 416x416 1 hyena, Done. (0.026s) image 97/180 /content/datasets/Visikom_PA03-1/test/images/hyena_056_resized_jpg.rf.e37995a577b2b8442aa02bfa52e84969.jpg: 416x416 1 hyena, Done. (0.026s) image 98/180 /content/datasets/Visikom_PA03-1/test/images/hyena_070_resized_jpg.rf.a3d01fdfdcf94df1750c8a4c464fb846.jpg: 416x416 1 hyena, Done. (0.026s) image 99/180 /content/datasets/Visikom_PA03-1/test/images/hyena_077_resized_jpg.rf.5c4ebfe0a786b9cd72f04e8e1456fb0d.jpg: 416x416 2 hyenas, Done. (0.027s) image 100/180 /content/datasets/Visikom_PA03-1/test/images/hyena_089_resized_jpg.rf.443b8ff18f7f4acc4d77c660a1bcf26e.jpg: 416x416 1 hyena, Done. (0.027s) image 101/180 /content/datasets/Visikom_PA03-1/test/images/hyena_094_resized_jpg.rf.96cb2e68e04c046fe02ccbf486dd8056.jpg: 416x416 1 hyena, Done. (0.026s) image 102/180 /content/datasets/Visikom_PA03-1/test/images/hyena_109_resized_jpg.rf.cf804ed0007301d6813e1b5e67023547.jpg: 416x416 1 hyena, Done. (0.026s) image 103/180 /content/datasets/Visikom_PA03-1/test/images/hyena_110_resized_jpg.rf.c083d2087c8dd025b61249051df1f3cb.jpg: 416x416 1 hyena, Done. (0.026s) image 104/180 /content/datasets/Visikom_PA03-1/test/images/hyena_119_resized_jpg.rf.a6b86838ad2a92ec49a239d72a498a0b.jpg: 416x416 1 hyena, Done. (0.026s) image 105/180 /content/datasets/Visikom_PA03-1/test/images/hyena_123_resized_jpg.rf.6dce5cba622a4ecb57dd89410b483f2a.jpg: 416x416 1 hyena, Done. (0.027s) image 106/180 /content/datasets/Visikom_PA03-1/test/images/hyena_146_resized_jpg.rf.348e28f088cec983476d3c62d3b2bb4f.jpg: 416x416 1 hyena, Done. (0.026s) image 107/180 /content/datasets/Visikom_PA03-1/test/images/hyena_150_resized_jpg.rf.669286f62963fb635bcb2a86fdcf4703.jpg: 416x416 1 hyena, Done. (0.026s) image 108/180 /content/datasets/Visikom_PA03-1/test/images/hyena_159_resized_jpg.rf.776fb1a0fec18f349fd7025a49514acf.jpg: 416x416 1 hyena, Done. (0.027s) image 109/180 /content/datasets/Visikom_PA03-1/test/images/hyena_200_resized_jpg.rf.dc227f48cde6ebe9f4e855096eb13eb9.jpg: 416x416 1 hyena, Done. (0.026s) image 110/180 /content/datasets/Visikom_PA03-1/test/images/hyena_216_resized_jpg.rf.431002a92f2dc9b100342749ce419ffa.jpg: 416x416 1 hyena, Done. (0.026s) image 111/180 /content/datasets/Visikom_PA03-1/test/images/hyena_218_resized_jpg.rf.8d5cc065a6b5614ed579b3a9f48d0c82.jpg: 416x416 1 hyena, Done. (0.027s) image 112/180 /content/datasets/Visikom_PA03-1/test/images/hyena_228_resized_jpg.rf.0b3c943fee5ca85ea18ca1e22928c7e0.jpg: 416x416 1 hyena, Done. (0.026s) image 113/180 /content/datasets/Visikom_PA03-1/test/images/hyena_234_resized_jpg.rf.55a063937db4e216a7c623c9bf5bb9eb.jpg: 416x416 1 hyena, Done. (0.027s) image 114/180 /content/datasets/Visikom_PA03-1/test/images/hyena_238_resized_jpg.rf.d568052282884b216002ffa9173dd914.jpg: 416x416 1 hyena, Done. (0.027s) image 115/180 /content/datasets/Visikom_PA03-1/test/images/hyena_245_resized_jpg.rf.aeb50005325b2dfaf9118f9610acd9e7.jpg: 416x416 1 hyena, Done. (0.026s) image 116/180 /content/datasets/Visikom_PA03-1/test/images/hyena_250_resized_jpg.rf.2ebe031d7f2f254d5eb1dded7366fa47.jpg: 416x416 1 hyena, Done. (0.026s) image 117/180 /content/datasets/Visikom_PA03-1/test/images/hyena_257_resized_jpg.rf.5060dd4dc7176d3d4ef4bf3b2384418a.jpg: 416x416 1 hyena, Done. (0.026s) image 118/180 /content/datasets/Visikom_PA03-1/test/images/hyena_263_resized_jpg.rf.15e1d3d8db3729815f024b778e8ddb84.jpg: 416x416 1 hyena, Done. (0.027s) image 119/180 /content/datasets/Visikom_PA03-1/test/images/hyena_279_resized_jpg.rf.0b0c6d8178a8f1817c9705ee329c6d8d.jpg: 416x416 1 hyena, Done. (0.027s) image 120/180 /content/datasets/Visikom_PA03-1/test/images/hyena_327_resized_jpg.rf.4bb1471c8be9de00b2b637f17c745cc9.jpg: 416x416 1 hyena, Done. (0.026s) image 121/180 /content/datasets/Visikom_PA03-1/test/images/hyena_334_resized_jpg.rf.8eee848c54b760c1c97ab7598426c052.jpg: 416x416 1 hyena, Done. (0.026s) image 122/180 /content/datasets/Visikom_PA03-1/test/images/hyena_337_resized_jpg.rf.0dc070afe637542a890f5eaabca91a66.jpg: 416x416 1 hyena, Done. (0.027s) image 123/180 /content/datasets/Visikom_PA03-1/test/images/hyena_359_resized_jpg.rf.524d5f44dd8bfcd339c7b5446b3ddb71.jpg: 416x416 1 hyena, Done. (0.027s) image 124/180 /content/datasets/Visikom_PA03-1/test/images/hyena_363_resized_jpg.rf.9315ad927e30337a548210e2fb44f286.jpg: 416x416 1 hyena, Done. (0.026s) image 125/180 /content/datasets/Visikom_PA03-1/test/images/hyena_364_resized_jpg.rf.669b4a83f37bc33cbf1df9b144184a1e.jpg: 416x416 1 hyena, Done. (0.027s) image 126/180 /content/datasets/Visikom_PA03-1/test/images/hyena_377_resized_jpg.rf.5b2a53d30beb2870f2a4b06f79517ba9.jpg: 416x416 1 hyena, Done. (0.027s) image 127/180 /content/datasets/Visikom_PA03-1/test/images/hyena_385_resized_jpg.rf.dc6b958347ec3b895c2848733d2f4d73.jpg: 416x416 2 hyenas, Done. (0.026s) image 128/180 /content/datasets/Visikom_PA03-1/test/images/hyena_387_resized_jpg.rf.38213444b05639fb254dd9e2c57c125e.jpg: 416x416 2 hyenas, Done. (0.026s) image 129/180 /content/datasets/Visikom_PA03-1/test/images/hyena_388_resized_jpg.rf.f12a6acda15facf991afebcd262e8a12.jpg: 416x416 2 hyenas, Done. (0.026s) image 130/180 /content/datasets/Visikom_PA03-1/test/images/hyena_389_resized_jpg.rf.a6f41406fdd99aa54d0d9be92a450561.jpg: 416x416 1 hyena, Done. (0.027s) image 131/180 /content/datasets/Visikom_PA03-1/test/images/hyena_390_resized_jpg.rf.f03c79da900bb549fa672b2dcc844dd6.jpg: 416x416 1 hyena, Done. (0.027s) image 132/180 /content/datasets/Visikom_PA03-1/test/images/hyena_391_resized_jpg.rf.e5e2f2113e380739e54988a6dd524f9e.jpg: 416x416 1 hyena, Done. (0.026s) image 133/180 /content/datasets/Visikom_PA03-1/test/images/hyena_395_resized_jpg.rf.965924d36b552a4832bd06e0cdf9ef4d.jpg: 416x416 1 hyena, Done. (0.026s) image 134/180 /content/datasets/Visikom_PA03-1/test/images/hyena_397_resized_jpg.rf.ef9e774780286062d7a246d06be13b21.jpg: 416x416 2 hyenas, Done. (0.026s) image 135/180 /content/datasets/Visikom_PA03-1/test/images/hyena_415_resized_jpg.rf.1f5cd77ed68e4b19e9cabf820fad04b2.jpg: 416x416 1 hyena, Done. (0.026s) image 136/180 /content/datasets/Visikom_PA03-1/test/images/hyena_428_resized_jpg.rf.06460db3fe4041b1767d1f65b1871568.jpg: 416x416 1 hyena, Done. (0.027s) image 137/180 /content/datasets/Visikom_PA03-1/test/images/hyena_431_resized_jpg.rf.87187cfb73f647241c7f572a7652e7f6.jpg: 416x416 1 hyena, Done. (0.026s) image 138/180 /content/datasets/Visikom_PA03-1/test/images/hyena_463_resized_jpg.rf.916057f28b5bc17d63186b5c45527dfb.jpg: 416x416 1 hyena, Done. (0.027s) image 139/180 /content/datasets/Visikom_PA03-1/test/images/hyena_480_resized_jpg.rf.3047f91a3076ce2a5c442a50c60adf3a.jpg: 416x416 1 hyena, Done. (0.027s) image 140/180 /content/datasets/Visikom_PA03-1/test/images/hyena_504_resized_jpg.rf.573e9a288bd6b23a371213f85c44635b.jpg: 416x416 1 hyena, Done. (0.027s) image 141/180 /content/datasets/Visikom_PA03-1/test/images/hyena_514_resized_jpg.rf.cb95b645caa520b4b49f2ada43a401ee.jpg: 416x416 1 hyena, Done. (0.027s) image 142/180 /content/datasets/Visikom_PA03-1/test/images/hyena_557_resized_jpg.rf.c0b8fe6f8a2ea2246df77d81a58310d4.jpg: 416x416 1 hyena, Done. (0.026s) image 143/180 /content/datasets/Visikom_PA03-1/test/images/hyena_559_resized_jpg.rf.112638174d23ee98f062855176c68783.jpg: 416x416 1 hyena, Done. (0.026s) image 144/180 /content/datasets/Visikom_PA03-1/test/images/hyena_561_resized_jpg.rf.299488b121f3a6b5818e920a5a90c13b.jpg: 416x416 1 hyena, Done. (0.027s) image 145/180 /content/datasets/Visikom_PA03-1/test/images/hyena_568_resized_jpg.rf.b309d1597ddd7a4f52c84ad4fae17fcc.jpg: 416x416 1 hyena, Done. (0.027s) image 146/180 /content/datasets/Visikom_PA03-1/test/images/hyena_594_resized_jpg.rf.d515cec39c6aec0a849459f6265cd540.jpg: 416x416 1 hyena, Done. (0.026s) image 147/180 /content/datasets/Visikom_PA03-1/test/images/hyena_599_resized_jpg.rf.efef44abdcdf803d8ec06a678eff4f6c.jpg: 416x416 1 hyena, Done. (0.027s) image 148/180 /content/datasets/Visikom_PA03-1/test/images/hyena_605_resized_jpg.rf.fd47b0f546256c819d86fa526acbe551.jpg: 416x416 1 hyena, Done. (0.027s) image 149/180 /content/datasets/Visikom_PA03-1/test/images/hyena_609_resized_jpg.rf.e0f3dde1607646c5fc1b05a40d45f91c.jpg: 416x416 1 hyena, Done. (0.027s) image 150/180 /content/datasets/Visikom_PA03-1/test/images/hyena_613_resized_jpg.rf.52ec1c7e2eae5ba08e2fdc6c729955e3.jpg: 416x416 1 hyena, Done. (0.027s) image 151/180 /content/datasets/Visikom_PA03-1/test/images/hyena_618_resized_jpg.rf.f1f4e7733003fd37abf72b39069d4ff1.jpg: 416x416 1 hyena, Done. (0.026s) image 152/180 /content/datasets/Visikom_PA03-1/test/images/hyena_621_resized_jpg.rf.b6df1601362a91fb7087333425c63acd.jpg: 416x416 1 hyena, Done. (0.026s) image 153/180 /content/datasets/Visikom_PA03-1/test/images/hyena_624_resized_jpg.rf.69aac35e9cff0d62f83171b5e217eeac.jpg: 416x416 1 hyena, Done. (0.027s) image 154/180 /content/datasets/Visikom_PA03-1/test/images/hyena_627_resized_jpg.rf.f8b4b3c4a59ecf4fca25447a3701e9b6.jpg: 416x416 1 hyena, Done. (0.027s) image 155/180 /content/datasets/Visikom_PA03-1/test/images/hyena_663_resized_jpg.rf.cb9492badceebbbd1799019234729d96.jpg: 416x416 1 hyena, Done. (0.026s) image 156/180 /content/datasets/Visikom_PA03-1/test/images/hyena_686_resized_jpg.rf.dfc7abff9efc63d3335f93a2d19bab30.jpg: 416x416 1 hyena, Done. (0.026s) image 157/180 /content/datasets/Visikom_PA03-1/test/images/hyena_704_resized_jpg.rf.fe64bdf956c67f6e07acba8451a1d9c4.jpg: 416x416 1 hyena, Done. (0.026s) image 158/180 /content/datasets/Visikom_PA03-1/test/images/hyena_705_resized_jpg.rf.5c20a25638f6e68936e3fd3341e7eefd.jpg: 416x416 1 hyena, Done. (0.027s) image 159/180 /content/datasets/Visikom_PA03-1/test/images/hyena_711_resized_jpg.rf.8d232e66ad0c2c051341eab901237c3e.jpg: 416x416 1 hyena, Done. (0.027s) image 160/180 /content/datasets/Visikom_PA03-1/test/images/hyena_712_resized_jpg.rf.e15281507ce3b379c24bc696d6c0c637.jpg: 416x416 1 hyena, Done. (0.027s) image 161/180 /content/datasets/Visikom_PA03-1/test/images/hyena_716_resized_jpg.rf.d56b6047bcae57c87c437b2252f54947.jpg: 416x416 1 hyena, Done. (0.027s) image 162/180 /content/datasets/Visikom_PA03-1/test/images/hyena_718_resized_jpg.rf.09ba10d59c6078e8571ca5f5dc75c9b1.jpg: 416x416 1 hyena, Done. (0.026s) image 163/180 /content/datasets/Visikom_PA03-1/test/images/hyena_722_resized_jpg.rf.5f9ce4b516d2037363f4fc3502253875.jpg: 416x416 1 hyena, Done. (0.027s) image 164/180 /content/datasets/Visikom_PA03-1/test/images/hyena_730_resized_jpg.rf.8eb2146b9a49b2cd25e56e0d9084eb29.jpg: 416x416 1 hyena, Done. (0.026s) image 165/180 /content/datasets/Visikom_PA03-1/test/images/hyena_749_resized_jpg.rf.7dd30be63fdad6f93abf73b30c223663.jpg: 416x416 1 hyena, Done. (0.026s) image 166/180 /content/datasets/Visikom_PA03-1/test/images/hyena_755_resized_jpg.rf.5e967d33988cc3fa088d649507676ed3.jpg: 416x416 1 hyena, Done. (0.026s) image 167/180 /content/datasets/Visikom_PA03-1/test/images/hyena_765_resized_jpg.rf.684d06bd32c8577503101910a6d97f21.jpg: 416x416 1 hyena, Done. (0.027s) image 168/180 /content/datasets/Visikom_PA03-1/test/images/hyena_766_resized_jpg.rf.6de5929d11cfb0e8027563eeb0b15877.jpg: 416x416 1 hyena, Done. (0.027s) image 169/180 /content/datasets/Visikom_PA03-1/test/images/hyena_802_resized_jpg.rf.01d88c6300c64f61496bf864d28eb306.jpg: 416x416 1 hyena, Done. (0.026s) image 170/180 /content/datasets/Visikom_PA03-1/test/images/hyena_822_resized_jpg.rf.fdfb249015b2d584a59bc287aec24f71.jpg: 416x416 1 hyena, Done. (0.027s) image 171/180 /content/datasets/Visikom_PA03-1/test/images/hyena_832_resized_jpg.rf.a4eac36705aa61b49e41182468b95124.jpg: 416x416 1 hyena, Done. (0.026s) image 172/180 /content/datasets/Visikom_PA03-1/test/images/hyena_836_resized_jpg.rf.3a4ef0bfa42f16ed7ef2c2dc2a3c297b.jpg: 416x416 1 hyena, Done. (0.027s) image 173/180 /content/datasets/Visikom_PA03-1/test/images/hyena_849_resized_jpg.rf.a148999c8db5c76e9037dfbc3a2db0fe.jpg: 416x416 1 hyena, Done. (0.026s) image 174/180 /content/datasets/Visikom_PA03-1/test/images/hyena_869_resized_jpg.rf.0bb619f9316d78a115f928a6b06fd101.jpg: 416x416 1 hyena, Done. (0.026s) image 175/180 /content/datasets/Visikom_PA03-1/test/images/hyena_873_resized_jpg.rf.bd6bd21ffc47c453114699b1833b54df.jpg: 416x416 2 hyenas, Done. (0.026s) image 176/180 /content/datasets/Visikom_PA03-1/test/images/hyena_880_resized_jpg.rf.5e26aaf2a029784229643b1f78a3c105.jpg: 416x416 1 hyena, Done. (0.026s) image 177/180 /content/datasets/Visikom_PA03-1/test/images/hyena_886_resized_jpg.rf.b7e0fa6bb5267435e2c581798d5ff8f6.jpg: 416x416 1 hyena, Done. (0.026s) image 178/180 /content/datasets/Visikom_PA03-1/test/images/hyena_893_resized_jpg.rf.67254702fc04b402aa56146eab0be0e6.jpg: 416x416 1 hyena, Done. (0.026s) image 179/180 /content/datasets/Visikom_PA03-1/test/images/hyena_894_resized_jpg.rf.fe58a03c03172e2293bef4050fd773de.jpg: 416x416 1 hyena, Done. (0.026s) image 180/180 /content/datasets/Visikom_PA03-1/test/images/hyena_895_resized_jpg.rf.68a767552b8337cec74fcc8d4d2a25a3.jpg: 416x416 1 hyena, Done. (0.026s) Speed: 0.3ms pre-process, 26.8ms inference, 1.3ms NMS per image at shape (1, 3, 416, 416) Results saved to runs/detect/exp2
#collapse-output
import glob
from IPython.display import Image, display
for imageName in glob.glob('/content/yolov5/runs/detect/exp2/*.jpg'): #assuming JPG
display(Image(filename=imageName))
print("\n")
Conclusion and Next Steps
Congratulations! You've trained a custom YOLOv5 model to recognize your custom objects.
To improve you model's performance, we recommend first interating on your datasets coverage and quality. See this guide for model performance improvement.
To deploy your model to an application, see this guide on exporting your model to deployment destinations.
Once your model is in production, you will want to continually iterate and improve on your dataset and model via active learning.
from google.colab import files
files.download('./runs/train/exp3/weights/best.pt')