Deskripsi

Saya mengambil dataset dari kaggle

Dataset tersebut memiliki gambar cheetah dan hyena. Saya mengambil 900 gambar cheetah dan 900 gambar hyena sehingga total gambar adalah 1800. Kemudian saya menganotasi gambar-gambar tersebut dengan menggunakan roboflow.

Kemudian sesuai langkah-langkah saya menggenerate datasetnya.

Lalu saya menggunakan notebook yang di generate dari wiki

Lalu saya membuat akun Weights and Biases untuk melakukan Weights and Biases Logging.

Selanjutnya kita train dan menyesuaikan epoch. Saya menggunakan epoch sebanyak 150. Sebenarnya sudah mencoba 200 epoch tapi terlalu lama sehingga tidak jadi.

Setelah di train maka kita akan melakukan tes pada weight terbaik yang sudah digenerate setelah training.

Jumlah gambar yang digunakan untuk test adalah 10% dari 1800 yaitu 180. Gambar deteksi ditampilkan dengan bounding box dan confidence. Setelah itu weight disimpan.

Custom Training with YOLOv5

In this tutorial, we assemble a dataset and train a custom YOLOv5 model to recognize the objects in our dataset. To do so we will take the following steps:

  • Gather a dataset of images and label our dataset
  • Export our dataset to YOLOv5
  • Train YOLOv5 to recognize the objects in our dataset
  • Evaluate our YOLOv5 model's performance
  • Run test inference to view our model at work

Step 1: Install Requirements

!git clone https://github.com/ultralytics/yolov5  # clone repo
%cd yolov5
%pip install -qr requirements.txt # install dependencies
%pip install -q roboflow

import torch
import os
from IPython.display import Image, clear_output  # to display images

print(f"Setup complete. Using torch {torch.__version__} ({torch.cuda.get_device_properties(0).name if torch.cuda.is_available() else 'CPU'})")
Cloning into 'yolov5'...
remote: Enumerating objects: 10222, done.
remote: Total 10222 (delta 0), reused 0 (delta 0), pack-reused 10222
Receiving objects: 100% (10222/10222), 10.54 MiB | 24.14 MiB/s, done.
Resolving deltas: 100% (7060/7060), done.
/content/yolov5
     |████████████████████████████████| 596 kB 11.5 MB/s 
     |████████████████████████████████| 145 kB 13.2 MB/s 
     |████████████████████████████████| 178 kB 42.6 MB/s 
     |████████████████████████████████| 1.1 MB 17.6 MB/s 
     |████████████████████████████████| 67 kB 5.1 MB/s 
     |████████████████████████████████| 138 kB 49.9 MB/s 
     |████████████████████████████████| 62 kB 755 kB/s 
  Building wheel for roboflow (setup.py) ... done
  Building wheel for wget (setup.py) ... done
ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
google-colab 1.0.0 requires requests~=2.23.0, but you have requests 2.26.0 which is incompatible.
datascience 0.10.6 requires folium==0.2.1, but you have folium 0.8.3 which is incompatible.
albumentations 0.1.12 requires imgaug<0.2.7,>=0.2.5, but you have imgaug 0.2.9 which is incompatible.
Setup complete. Using torch 1.10.0+cu111 (Tesla K80)

Step 2: Assemble Our Dataset

In order to train our custom model, we need to assemble a dataset of representative images with bounding box annotations around the objects that we want to detect. And we need our dataset to be in YOLOv5 format.

In Roboflow, you can choose between two paths:

Annotate

Version

Export

Download Code

from roboflow import Roboflow
rf = Roboflow(model_format="yolov5", notebook="ultralytics")
upload and label your dataset, and get an API KEY here: https://app.roboflow.com/?model=yolov5&ref=ultralytics
os.environ["DATASET_DIRECTORY"] = "/content/datasets"
from getpass import getpass
rf = Roboflow(api_key=getpass('Enter the api key: '))
project = rf.workspace().project("visikom_pa03")
dataset = project.version(1).download("yolov5")
Enter the api key: ··········
loading Roboflow workspace...
loading Roboflow project...
Downloading Dataset Version Zip in /content/datasets/Visikom_PA03-1 to yolov5pytorch: 100% [58871666 / 58871666] bytes
Extracting Dataset Version Zip to /content/datasets/Visikom_PA03-1 in yolov5pytorch:: 100%|██████████| 3612/3612 [00:04<00:00, 884.26it/s]

Step 3: Train Our Custom YOLOv5 model

Here, we are able to pass a number of arguments:

  • img: define input image size
  • batch: determine batch size
  • epochs: define the number of training epochs. (Note: often, 3000+ are common here!)
  • data: Our dataset locaiton is saved in the dataset.location
  • weights: specify a path to weights to start transfer learning from. Here we choose the generic COCO pretrained checkpoint.
  • cache: cache images for faster training
%pip install wandb
!python train.py --img 416 --batch 16 --epochs 150 --data {dataset.location}/data.yaml --weights yolov5s.pt --cache

Collecting wandb
  Downloading wandb-0.12.7-py2.py3-none-any.whl (1.7 MB)
     |████████████████████████████████| 1.7 MB 10.8 MB/s 
Collecting docker-pycreds>=0.4.0
  Downloading docker_pycreds-0.4.0-py2.py3-none-any.whl (9.0 kB)
Collecting configparser>=3.8.1
  Downloading configparser-5.2.0-py3-none-any.whl (19 kB)
Requirement already satisfied: requests<3,>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from wandb) (2.26.0)
Collecting GitPython>=1.0.0
  Downloading GitPython-3.1.24-py3-none-any.whl (180 kB)
     |████████████████████████████████| 180 kB 35.7 MB/s 
Requirement already satisfied: PyYAML in /usr/local/lib/python3.7/dist-packages (from wandb) (6.0)
Requirement already satisfied: six>=1.13.0 in /usr/local/lib/python3.7/dist-packages (from wandb) (1.15.0)
Collecting sentry-sdk>=1.0.0
  Downloading sentry_sdk-1.5.1-py2.py3-none-any.whl (140 kB)
     |████████████████████████████████| 140 kB 52.1 MB/s 
Requirement already satisfied: python-dateutil>=2.6.1 in /usr/local/lib/python3.7/dist-packages (from wandb) (2.8.2)
Collecting subprocess32>=3.5.3
  Downloading subprocess32-3.5.4.tar.gz (97 kB)
     |████████████████████████████████| 97 kB 7.5 MB/s 
Requirement already satisfied: protobuf>=3.12.0 in /usr/local/lib/python3.7/dist-packages (from wandb) (3.17.3)
Requirement already satisfied: promise<3,>=2.0 in /usr/local/lib/python3.7/dist-packages (from wandb) (2.3)
Collecting pathtools
  Downloading pathtools-0.1.2.tar.gz (11 kB)
Collecting shortuuid>=0.5.0
  Downloading shortuuid-1.0.8-py3-none-any.whl (9.5 kB)
Requirement already satisfied: Click!=8.0.0,>=7.0 in /usr/local/lib/python3.7/dist-packages (from wandb) (7.1.2)
Requirement already satisfied: psutil>=5.0.0 in /usr/local/lib/python3.7/dist-packages (from wandb) (5.4.8)
Collecting yaspin>=1.0.0
  Downloading yaspin-2.1.0-py3-none-any.whl (18 kB)
Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.7/dist-packages (from GitPython>=1.0.0->wandb) (3.10.0.2)
Collecting gitdb<5,>=4.0.1
  Downloading gitdb-4.0.9-py3-none-any.whl (63 kB)
     |████████████████████████████████| 63 kB 1.8 MB/s 
Collecting smmap<6,>=3.0.1
  Downloading smmap-5.0.0-py3-none-any.whl (24 kB)
Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.0.0->wandb) (2021.5.30)
Requirement already satisfied: charset-normalizer~=2.0.0 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.0.0->wandb) (2.0.8)
Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.0.0->wandb) (2.10)
Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.0.0->wandb) (1.26.6)
Requirement already satisfied: termcolor<2.0.0,>=1.1.0 in /usr/local/lib/python3.7/dist-packages (from yaspin>=1.0.0->wandb) (1.1.0)
Building wheels for collected packages: subprocess32, pathtools
  Building wheel for subprocess32 (setup.py) ... done
  Created wheel for subprocess32: filename=subprocess32-3.5.4-py3-none-any.whl size=6502 sha256=c4f0c8bbf3ee692fdadc4cdfb644bc95bde858c614a6f9e1aee842b26790c532
  Stored in directory: /root/.cache/pip/wheels/50/ca/fa/8fca8d246e64f19488d07567547ddec8eb084e8c0d7a59226a
  Building wheel for pathtools (setup.py) ... done
  Created wheel for pathtools: filename=pathtools-0.1.2-py3-none-any.whl size=8807 sha256=3b1c5ca3314ab3744af7220119e9ee81f68fac4c126ef6e8344ad5b8b65d7c59
  Stored in directory: /root/.cache/pip/wheels/3e/31/09/fa59cef12cdcfecc627b3d24273699f390e71828921b2cbba2
Successfully built subprocess32 pathtools
Installing collected packages: smmap, gitdb, yaspin, subprocess32, shortuuid, sentry-sdk, pathtools, GitPython, docker-pycreds, configparser, wandb
Successfully installed GitPython-3.1.24 configparser-5.2.0 docker-pycreds-0.4.0 gitdb-4.0.9 pathtools-0.1.2 sentry-sdk-1.5.1 shortuuid-1.0.8 smmap-5.0.0 subprocess32-3.5.4 wandb-0.12.7 yaspin-2.1.0
wandb: (1) Create a W&B account
wandb: (2) Use an existing W&B account
wandb: (3) Don't visualize my results
wandb: Enter your choice: (30 second timeout) 2
wandb: You chose 'Use an existing W&B account'
wandb: You can find your API key in your browser here: https://wandb.ai/authorize
wandb: Paste an API key from your profile and hit enter, or press ctrl+c to quit: 
wandb: Appending key for api.wandb.ai to your netrc file: /root/.netrc
train: weights=yolov5s.pt, cfg=, data=/content/datasets/Visikom_PA03-1/data.yaml, hyp=data/hyps/hyp.scratch.yaml, epochs=150, batch_size=16, imgsz=416, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, evolve=None, bucket=, cache=ram, image_weights=False, device=, multi_scale=False, single_cls=False, adam=False, sync_bn=False, workers=8, project=runs/train, name=exp, exist_ok=False, quad=False, linear_lr=False, label_smoothing=0.0, patience=100, freeze=0, save_period=-1, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest
github: up to date with https://github.com/ultralytics/yolov5 ✅
YOLOv5 🚀 v6.0-147-g628817d torch 1.10.0+cu111 CUDA:0 (Tesla K80, 11441MiB)

hyperparameters: lr0=0.01, lrf=0.1, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0
TensorBoard: Start with 'tensorboard --logdir runs/train', view at http://localhost:6006/
wandb: Currently logged in as: lordronz (use `wandb login --relogin` to force relogin)
wandb: Tracking run with wandb version 0.12.7
wandb: Syncing run major-shadow-1
wandb: ⭐️ View project at https://wandb.ai/lordronz/YOLOv5
wandb: 🚀 View run at https://wandb.ai/lordronz/YOLOv5/runs/3j8heu3j
wandb: Run data is saved locally in /content/yolov5/wandb/run-20211216_101614-3j8heu3j
wandb: Run `wandb offline` to turn off syncing.

Overriding model.yaml nc=80 with nc=2

                 from  n    params  module                                  arguments                     
  0                -1  1      3520  models.common.Conv                      [3, 32, 6, 2, 2]              
  1                -1  1     18560  models.common.Conv                      [32, 64, 3, 2]                
  2                -1  1     18816  models.common.C3                        [64, 64, 1]                   
  3                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]               
  4                -1  2    115712  models.common.C3                        [128, 128, 2]                 
  5                -1  1    295424  models.common.Conv                      [128, 256, 3, 2]              
  6                -1  3    625152  models.common.C3                        [256, 256, 3]                 
  7                -1  1   1180672  models.common.Conv                      [256, 512, 3, 2]              
  8                -1  1   1182720  models.common.C3                        [512, 512, 1]                 
  9                -1  1    656896  models.common.SPPF                      [512, 512, 5]                 
 10                -1  1    131584  models.common.Conv                      [512, 256, 1, 1]              
 11                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          
 12           [-1, 6]  1         0  models.common.Concat                    [1]                           
 13                -1  1    361984  models.common.C3                        [512, 256, 1, False]          
 14                -1  1     33024  models.common.Conv                      [256, 128, 1, 1]              
 15                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          
 16           [-1, 4]  1         0  models.common.Concat                    [1]                           
 17                -1  1     90880  models.common.C3                        [256, 128, 1, False]          
 18                -1  1    147712  models.common.Conv                      [128, 128, 3, 2]              
 19          [-1, 14]  1         0  models.common.Concat                    [1]                           
 20                -1  1    296448  models.common.C3                        [256, 256, 1, False]          
 21                -1  1    590336  models.common.Conv                      [256, 256, 3, 2]              
 22          [-1, 10]  1         0  models.common.Concat                    [1]                           
 23                -1  1   1182720  models.common.C3                        [512, 512, 1, False]          
 24      [17, 20, 23]  1     18879  models.yolo.Detect                      [2, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]
Model Summary: 270 layers, 7025023 parameters, 7025023 gradients, 15.9 GFLOPs

Transferred 343/349 items from yolov5s.pt
Scaled weight_decay = 0.0005
optimizer: SGD with parameter groups 57 weight, 60 weight (no decay), 60 bias
albumentations: version 1.0.3 required by YOLOv5, but version 0.1.12 is currently installed
train: Scanning '/content/datasets/Visikom_PA03-1/train/labels' images and labels...1260 found, 0 missing, 1 empty, 0 corrupted: 100% 1260/1260 [00:00<00:00, 1438.57it/s]
train: New cache created: /content/datasets/Visikom_PA03-1/train/labels.cache
train: Caching images (0.7GB ram): 100% 1260/1260 [00:03<00:00, 343.51it/s]
val: Scanning '/content/datasets/Visikom_PA03-1/valid/labels' images and labels...360 found, 0 missing, 1 empty, 0 corrupted: 100% 360/360 [00:00<00:00, 627.37it/s]
val: New cache created: /content/datasets/Visikom_PA03-1/valid/labels.cache
val: Caching images (0.2GB ram): 100% 360/360 [00:01<00:00, 343.65it/s]
Plotting labels to runs/train/exp3/labels.jpg... 

AutoAnchor: 2.82 anchors/target, 1.000 Best Possible Recall (BPR). Current anchors are a good fit to dataset ✅
Image sizes 416 train, 416 val
Using 2 dataloader workers
Logging results to runs/train/exp3
Starting training for 150 epochs...

     Epoch   gpu_mem       box       obj       cls    labels  img_size
     0/149     1.41G   0.08737   0.02249    0.0261        26       416: 100% 79/79 [00:47<00:00,  1.67it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:05<00:00,  2.15it/s]
                 all        360        359      0.297       0.47      0.321      0.137

     Epoch   gpu_mem       box       obj       cls    labels  img_size
     1/149     1.62G   0.05617   0.02208   0.02268        31       416: 100% 79/79 [00:44<00:00,  1.77it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.42it/s]
                 all        360        359      0.592      0.721       0.69      0.408

     Epoch   gpu_mem       box       obj       cls    labels  img_size
     2/149     1.62G   0.04776   0.01867   0.02015        32       416: 100% 79/79 [00:43<00:00,  1.80it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.68it/s]
                 all        360        359      0.679      0.766      0.782      0.432

     Epoch   gpu_mem       box       obj       cls    labels  img_size
     3/149     1.62G   0.04634   0.01718   0.01396        32       416: 100% 79/79 [00:43<00:00,  1.81it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.69it/s]
                 all        360        359       0.81      0.844      0.871      0.493

     Epoch   gpu_mem       box       obj       cls    labels  img_size
     4/149     1.62G   0.04274    0.0172   0.01237        40       416: 100% 79/79 [00:43<00:00,  1.81it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.71it/s]
                 all        360        359      0.916       0.91      0.963      0.554

     Epoch   gpu_mem       box       obj       cls    labels  img_size
     5/149     1.62G   0.04086   0.01659    0.0101        31       416: 100% 79/79 [00:43<00:00,  1.81it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.74it/s]
                 all        360        359      0.888      0.892      0.957      0.576

     Epoch   gpu_mem       box       obj       cls    labels  img_size
     6/149     1.62G   0.04176   0.01572   0.01166        23       416: 100% 79/79 [00:43<00:00,  1.82it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.74it/s]
                 all        360        359      0.865      0.914      0.909       0.45

     Epoch   gpu_mem       box       obj       cls    labels  img_size
     7/149     1.62G   0.03997   0.01577  0.009407        33       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.71it/s]
                 all        360        359      0.855      0.936       0.93      0.598

     Epoch   gpu_mem       box       obj       cls    labels  img_size
     8/149     1.62G   0.03879   0.01694   0.01275        40       416: 100% 79/79 [00:43<00:00,  1.82it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.68it/s]
                 all        360        359      0.886      0.819      0.878      0.456

     Epoch   gpu_mem       box       obj       cls    labels  img_size
     9/149     1.62G   0.03835   0.01663   0.01203        38       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.72it/s]
                 all        360        359       0.75      0.697      0.778      0.385

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    10/149     1.62G   0.03959    0.0167   0.01182        33       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.71it/s]
                 all        360        359      0.935      0.927      0.955      0.466

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    11/149     1.62G   0.03981   0.01662    0.0118        24       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.71it/s]
                 all        360        359      0.874      0.888      0.938      0.552

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    12/149     1.62G   0.03883   0.01742   0.01256        31       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.71it/s]
                 all        360        359      0.555      0.611      0.571      0.223

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    13/149     1.62G   0.04124   0.01666    0.0117        34       416: 100% 79/79 [00:43<00:00,  1.82it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.70it/s]
                 all        360        359      0.807      0.694      0.772      0.363

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    14/149     1.62G   0.03613   0.01686   0.01048        33       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:05<00:00,  2.11it/s]
                 all        360        359      0.819      0.835      0.862      0.468

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    15/149     1.62G    0.0365   0.01643   0.01068        31       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.73it/s]
                 all        360        359        0.9      0.862      0.897      0.537

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    16/149     1.62G   0.03537   0.01616   0.01032        28       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.71it/s]
                 all        360        359      0.857      0.891       0.89      0.539

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    17/149     1.62G   0.03485   0.01661   0.01113        39       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.72it/s]
                 all        360        359      0.841      0.835      0.861      0.498

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    18/149     1.62G   0.03384   0.01621  0.009891        31       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.73it/s]
                 all        360        359      0.861       0.89      0.928      0.504

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    19/149     1.62G   0.03192   0.01615  0.008882        35       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.72it/s]
                 all        360        359      0.931      0.911      0.948      0.523

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    20/149     1.62G   0.03336   0.01566   0.01012        30       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.73it/s]
                 all        360        359      0.917      0.936      0.964      0.585

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    21/149     1.62G   0.03161   0.01565  0.009046        30       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.70it/s]
                 all        360        359      0.758      0.713       0.79      0.422

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    22/149     1.62G   0.03118   0.01556  0.008691        33       416: 100% 79/79 [00:43<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.74it/s]
                 all        360        359      0.937      0.908      0.949      0.605

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    23/149     1.62G   0.03208   0.01551   0.01003        36       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.72it/s]
                 all        360        359      0.924      0.916      0.949      0.596

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    24/149     1.62G   0.03189   0.01551  0.009232        28       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.74it/s]
                 all        360        359      0.944      0.913       0.96      0.604

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    25/149     1.62G   0.03094   0.01566  0.009471        34       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.73it/s]
                 all        360        359       0.92      0.935      0.947      0.593

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    26/149     1.62G   0.03172   0.01525  0.009872        28       416: 100% 79/79 [00:43<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.74it/s]
                 all        360        359      0.931      0.941      0.964      0.613

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    27/149     1.62G   0.03058   0.01543  0.008616        30       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.74it/s]
                 all        360        359      0.954      0.936      0.968      0.644

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    28/149     1.62G   0.03095   0.01539  0.007603        31       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.72it/s]
                 all        360        359      0.969      0.955      0.977       0.65

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    29/149     1.62G   0.03067   0.01533  0.008276        22       416: 100% 79/79 [00:42<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:05<00:00,  2.12it/s]
                 all        360        359      0.955      0.947      0.965       0.63

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    30/149     1.62G   0.02861   0.01475  0.007799        31       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.72it/s]
                 all        360        359      0.955      0.906      0.965      0.596

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    31/149     1.62G   0.02922   0.01482  0.008749        29       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.75it/s]
                 all        360        359      0.983       0.95      0.978      0.638

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    32/149     1.62G   0.03008   0.01488  0.007603        35       416: 100% 79/79 [00:43<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.74it/s]
                 all        360        359      0.917      0.903      0.944      0.582

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    33/149     1.62G   0.02989   0.01488  0.007921        28       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.72it/s]
                 all        360        359      0.959       0.93      0.971      0.637

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    34/149     1.62G   0.02913   0.01509  0.008465        33       416: 100% 79/79 [00:43<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.74it/s]
                 all        360        359       0.96      0.947      0.974      0.612

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    35/149     1.62G   0.02787   0.01509  0.008867        33       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.71it/s]
                 all        360        359      0.919      0.939      0.965      0.607

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    36/149     1.62G   0.02961   0.01515  0.008456        35       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.71it/s]
                 all        360        359      0.927      0.933      0.964      0.551

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    37/149     1.62G   0.02832     0.015  0.007445        28       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.73it/s]
                 all        360        359      0.923      0.914      0.942      0.593

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    38/149     1.62G   0.02999   0.01549  0.008603        29       416: 100% 79/79 [00:43<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.73it/s]
                 all        360        359      0.936      0.955       0.97      0.637

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    39/149     1.62G   0.02762    0.0148  0.008099        40       416: 100% 79/79 [00:43<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.75it/s]
                 all        360        359      0.954       0.94      0.966      0.659

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    40/149     1.62G   0.02832   0.01501  0.008204        32       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.74it/s]
                 all        360        359      0.936      0.939      0.964      0.636

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    41/149     1.62G    0.0294   0.01469   0.00668        33       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.71it/s]
                 all        360        359      0.955      0.955      0.969      0.654

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    42/149     1.62G   0.02852   0.01446  0.006934        29       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.73it/s]
                 all        360        359      0.952      0.969      0.982       0.66

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    43/149     1.62G    0.0271   0.01424  0.007107        26       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.71it/s]
                 all        360        359      0.952       0.94      0.976      0.642

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    44/149     1.62G   0.02691   0.01452   0.00832        27       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:05<00:00,  2.16it/s]
                 all        360        359      0.962      0.936      0.972       0.63

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    45/149     1.62G   0.02767   0.01462  0.006796        31       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.74it/s]
                 all        360        359      0.971      0.948      0.978      0.644

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    46/149     1.62G   0.02709   0.01452  0.008858        26       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.73it/s]
                 all        360        359      0.945      0.916      0.957      0.633

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    47/149     1.62G   0.02769   0.01406  0.006499        33       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.72it/s]
                 all        360        359      0.963      0.964      0.969      0.646

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    48/149     1.62G    0.0275    0.0142  0.006776        31       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.72it/s]
                 all        360        359      0.965      0.958      0.978       0.65

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    49/149     1.62G   0.02855   0.01422  0.007241        28       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.73it/s]
                 all        360        359      0.945       0.93      0.951      0.632

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    50/149     1.62G    0.0283   0.01424  0.006446        31       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.74it/s]
                 all        360        359       0.95      0.955      0.972      0.649

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    51/149     1.62G   0.02732   0.01434  0.006851        38       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.75it/s]
                 all        360        359      0.988      0.964      0.982      0.673

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    52/149     1.62G   0.02799   0.01462  0.006692        32       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.71it/s]
                 all        360        359       0.98       0.94       0.98      0.645

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    53/149     1.62G   0.02623   0.01421  0.007056        32       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.76it/s]
                 all        360        359      0.971      0.964      0.981      0.675

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    54/149     1.62G    0.0274   0.01434   0.00672        38       416: 100% 79/79 [00:43<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.74it/s]
                 all        360        359      0.977      0.951      0.978      0.648

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    55/149     1.62G   0.02657   0.01353   0.00648        23       416: 100% 79/79 [00:42<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.74it/s]
                 all        360        359      0.955      0.959      0.976      0.668

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    56/149     1.62G   0.02664   0.01416  0.006136        32       416: 100% 79/79 [00:43<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.75it/s]
                 all        360        359      0.972      0.953      0.979      0.659

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    57/149     1.62G   0.02602   0.01401  0.005861        31       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.74it/s]
                 all        360        359      0.974      0.942       0.98      0.628

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    58/149     1.62G   0.02547   0.01386   0.00736        30       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.73it/s]
                 all        360        359      0.961      0.955      0.979      0.661

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    59/149     1.62G   0.02651   0.01426   0.00724        37       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:05<00:00,  2.16it/s]
                 all        360        359      0.949      0.939      0.966      0.624

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    60/149     1.62G   0.02794   0.01434  0.007534        32       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.75it/s]
                 all        360        359      0.963      0.958      0.977      0.675

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    61/149     1.62G   0.02592    0.0143  0.007021        32       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.73it/s]
                 all        360        359      0.976      0.953      0.971      0.661

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    62/149     1.62G    0.0263   0.01408   0.00603        38       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.70it/s]
                 all        360        359      0.964      0.957      0.982      0.642

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    63/149     1.62G   0.02663   0.01429  0.007677        35       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.75it/s]
                 all        360        359      0.977      0.963      0.979      0.652

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    64/149     1.62G   0.02621   0.01432  0.006186        37       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.73it/s]
                 all        360        359      0.978      0.961      0.986      0.651

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    65/149     1.62G   0.02639   0.01381  0.006864        29       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.72it/s]
                 all        360        359      0.964      0.953       0.98      0.669

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    66/149     1.62G   0.02621   0.01408  0.007122        35       416: 100% 79/79 [00:43<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.75it/s]
                 all        360        359      0.982       0.98      0.989      0.674

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    67/149     1.62G   0.02443   0.01354  0.005236        38       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.73it/s]
                 all        360        359      0.977      0.975      0.991       0.68

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    68/149     1.62G   0.02483   0.01371  0.006186        38       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.70it/s]
                 all        360        359      0.954      0.978      0.984      0.653

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    69/149     1.62G   0.02532   0.01371  0.007711        24       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.74it/s]
                 all        360        359      0.973      0.966      0.982      0.684

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    70/149     1.62G   0.02365   0.01356  0.005834        38       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.72it/s]
                 all        360        359      0.974      0.954      0.979      0.683

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    71/149     1.62G   0.02526   0.01392  0.005784        36       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.74it/s]
                 all        360        359      0.972      0.969      0.981      0.662

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    72/149     1.62G   0.02485   0.01412   0.00564        35       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.74it/s]
                 all        360        359      0.956      0.964      0.974      0.649

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    73/149     1.62G   0.02547   0.01392  0.005849        28       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.74it/s]
                 all        360        359      0.964      0.961       0.98      0.689

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    74/149     1.62G   0.02515   0.01356  0.006771        31       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:05<00:00,  2.16it/s]
                 all        360        359       0.98      0.957       0.98      0.642

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    75/149     1.62G   0.02445   0.01375  0.005435        24       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.73it/s]
                 all        360        359      0.982      0.972      0.984      0.677

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    76/149     1.62G   0.02377   0.01359  0.004664        29       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.76it/s]
                 all        360        359      0.988      0.966      0.984      0.699

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    77/149     1.62G   0.02474   0.01333  0.005772        27       416: 100% 79/79 [00:42<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.72it/s]
                 all        360        359       0.98      0.964      0.983      0.682

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    78/149     1.62G   0.02427   0.01311  0.005514        37       416: 100% 79/79 [00:42<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.74it/s]
                 all        360        359      0.971      0.967      0.978      0.708

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    79/149     1.62G   0.02485   0.01369  0.006131        32       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.73it/s]
                 all        360        359      0.988      0.966      0.984      0.701

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    80/149     1.62G   0.02485   0.01319  0.005135        27       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.73it/s]
                 all        360        359      0.963      0.964      0.974      0.685

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    81/149     1.62G   0.02408   0.01308  0.004953        36       416: 100% 79/79 [00:43<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.74it/s]
                 all        360        359      0.987      0.975      0.987      0.682

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    82/149     1.62G   0.02287   0.01283  0.004554        33       416: 100% 79/79 [00:42<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.73it/s]
                 all        360        359       0.97       0.98      0.985      0.703

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    83/149     1.62G   0.02359   0.01324  0.005014        33       416: 100% 79/79 [00:43<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.70it/s]
                 all        360        359      0.977       0.97       0.98      0.702

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    84/149     1.62G   0.02424   0.01314  0.005383        31       416: 100% 79/79 [00:43<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.74it/s]
                 all        360        359      0.972      0.962      0.982      0.676

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    85/149     1.62G   0.02454   0.01269  0.004688        32       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.73it/s]
                 all        360        359      0.974      0.955      0.979       0.67

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    86/149     1.62G   0.02395   0.01342  0.005318        35       416: 100% 79/79 [00:43<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.73it/s]
                 all        360        359      0.958      0.975      0.983      0.695

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    87/149     1.62G   0.02324   0.01317   0.00584        26       416: 100% 79/79 [00:42<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.73it/s]
                 all        360        359      0.977      0.975      0.984      0.681

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    88/149     1.62G   0.02413   0.01323  0.005334        34       416: 100% 79/79 [00:42<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.72it/s]
                 all        360        359      0.973      0.969      0.981      0.674

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    89/149     1.62G   0.02446   0.01315  0.005705        29       416: 100% 79/79 [00:43<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:05<00:00,  2.17it/s]
                 all        360        359      0.964      0.972      0.983      0.685

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    90/149     1.62G   0.02435   0.01264  0.005066        26       416: 100% 79/79 [00:43<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.74it/s]
                 all        360        359       0.96      0.961      0.977        0.7

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    91/149     1.62G   0.02291   0.01307  0.004875        39       416: 100% 79/79 [00:42<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.75it/s]
                 all        360        359      0.976      0.969      0.983      0.685

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    92/149     1.62G   0.02444   0.01299  0.004825        36       416: 100% 79/79 [00:42<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.74it/s]
                 all        360        359      0.985      0.975      0.989      0.688

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    93/149     1.62G    0.0229   0.01318  0.005412        36       416: 100% 79/79 [00:42<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.72it/s]
                 all        360        359      0.987       0.98      0.987      0.686

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    94/149     1.62G   0.02302   0.01293  0.004801        34       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.75it/s]
                 all        360        359      0.977      0.975      0.986      0.669

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    95/149     1.62G   0.02396   0.01332  0.004397        36       416: 100% 79/79 [00:43<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.76it/s]
                 all        360        359      0.956      0.978       0.98      0.685

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    96/149     1.62G   0.02245   0.01288  0.005069        31       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.73it/s]
                 all        360        359      0.975      0.971      0.977      0.676

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    97/149     1.62G    0.0227   0.01285  0.004587        29       416: 100% 79/79 [00:43<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.76it/s]
                 all        360        359      0.962      0.969      0.974       0.68

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    98/149     1.62G   0.02241   0.01303  0.004517        29       416: 100% 79/79 [00:42<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.74it/s]
                 all        360        359      0.965      0.972       0.98      0.686

     Epoch   gpu_mem       box       obj       cls    labels  img_size
    99/149     1.62G    0.0226   0.01285  0.005117        30       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.74it/s]
                 all        360        359      0.975      0.968      0.984      0.687

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   100/149     1.62G   0.02183   0.01262  0.004957        29       416: 100% 79/79 [00:43<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.69it/s]
                 all        360        359      0.968      0.964       0.98      0.674

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   101/149     1.62G   0.02288   0.01249  0.004623        26       416: 100% 79/79 [00:43<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.74it/s]
                 all        360        359      0.988      0.972      0.986      0.676

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   102/149     1.62G   0.02409   0.01275  0.004394        25       416: 100% 79/79 [00:42<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.73it/s]
                 all        360        359      0.988      0.972      0.986      0.703

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   103/149     1.62G   0.02302   0.01257  0.004585        27       416: 100% 79/79 [00:43<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.73it/s]
                 all        360        359      0.987      0.975      0.987      0.692

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   104/149     1.62G   0.02252   0.01295  0.004913        30       416: 100% 79/79 [00:42<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:05<00:00,  2.14it/s]
                 all        360        359      0.983      0.972      0.985        0.7

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   105/149     1.62G   0.02144   0.01253  0.004735        34       416: 100% 79/79 [00:42<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.73it/s]
                 all        360        359       0.98      0.983      0.986      0.698

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   106/149     1.62G   0.02168   0.01258   0.00433        35       416: 100% 79/79 [00:42<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.74it/s]
                 all        360        359       0.98       0.98      0.989      0.692

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   107/149     1.62G   0.02218   0.01276   0.00444        41       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.75it/s]
                 all        360        359      0.989      0.978      0.988      0.703

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   108/149     1.62G   0.02244   0.01288   0.00443        23       416: 100% 79/79 [00:43<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.74it/s]
                 all        360        359      0.989      0.972      0.987      0.691

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   109/149     1.62G   0.02176   0.01268  0.004351        39       416: 100% 79/79 [00:42<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.72it/s]
                 all        360        359      0.997      0.972      0.988      0.702

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   110/149     1.62G   0.02183   0.01269  0.004244        36       416: 100% 79/79 [00:42<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.75it/s]
                 all        360        359      0.991      0.969      0.988      0.701

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   111/149     1.62G   0.02146   0.01253   0.00348        28       416: 100% 79/79 [00:42<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.74it/s]
                 all        360        359      0.994      0.975      0.988      0.695

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   112/149     1.62G   0.02275   0.01286  0.004164        37       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.71it/s]
                 all        360        359      0.991      0.975      0.988      0.708

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   113/149     1.62G   0.02076   0.01225  0.003907        29       416: 100% 79/79 [00:42<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.75it/s]
                 all        360        359      0.991      0.966      0.989      0.707

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   114/149     1.62G   0.02082   0.01268  0.004174        37       416: 100% 79/79 [00:43<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.74it/s]
                 all        360        359      0.988      0.968       0.99      0.696

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   115/149     1.62G   0.02191   0.01258  0.004781        35       416: 100% 79/79 [00:43<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.73it/s]
                 all        360        359      0.984      0.972      0.988      0.698

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   116/149     1.62G   0.02202   0.01268  0.004343        34       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.74it/s]
                 all        360        359      0.985      0.978      0.991      0.705

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   117/149     1.62G   0.02202   0.01246   0.00401        34       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.74it/s]
                 all        360        359      0.958      0.982       0.98      0.702

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   118/149     1.62G   0.02192   0.01251   0.00479        29       416: 100% 79/79 [00:42<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.73it/s]
                 all        360        359      0.985      0.969      0.986      0.702

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   119/149     1.62G    0.0219   0.01239  0.005176        33       416: 100% 79/79 [00:42<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:05<00:00,  2.17it/s]
                 all        360        359      0.988      0.964      0.985      0.682

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   120/149     1.62G   0.02184   0.01245  0.005212        30       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.74it/s]
                 all        360        359      0.991      0.975      0.987      0.698

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   121/149     1.62G   0.02065   0.01269  0.003958        33       416: 100% 79/79 [00:43<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.72it/s]
                 all        360        359      0.983      0.974      0.988      0.704

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   122/149     1.62G   0.02057   0.01247  0.005235        31       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.70it/s]
                 all        360        359      0.985      0.978      0.989      0.695

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   123/149     1.62G   0.02204   0.01298  0.004128        24       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.74it/s]
                 all        360        359      0.991      0.978      0.989      0.704

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   124/149     1.62G   0.02168   0.01226  0.004521        23       416: 100% 79/79 [00:43<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.71it/s]
                 all        360        359      0.994      0.972      0.987      0.705

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   125/149     1.62G   0.02112   0.01225  0.004018        35       416: 100% 79/79 [00:43<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.75it/s]
                 all        360        359      0.988      0.972      0.989      0.698

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   126/149     1.62G   0.01991    0.0123  0.003286        36       416: 100% 79/79 [00:42<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.71it/s]
                 all        360        359      0.985      0.965      0.988      0.701

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   127/149     1.62G   0.02063   0.01242  0.003427        34       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.71it/s]
                 all        360        359      0.982      0.966      0.987      0.703

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   128/149     1.62G   0.02077   0.01225  0.004466        31       416: 100% 79/79 [00:43<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.72it/s]
                 all        360        359      0.974      0.962       0.98       0.69

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   129/149     1.62G   0.02104   0.01258  0.004293        35       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.74it/s]
                 all        360        359      0.985      0.975      0.987      0.708

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   130/149     1.62G   0.02099    0.0123  0.005538        35       416: 100% 79/79 [00:42<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.72it/s]
                 all        360        359      0.982      0.966      0.985      0.692

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   131/149     1.62G    0.0213   0.01252  0.003567        25       416: 100% 79/79 [00:43<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.75it/s]
                 all        360        359      0.974      0.969      0.984      0.686

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   132/149     1.62G   0.02114   0.01254  0.004359        35       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.71it/s]
                 all        360        359      0.985      0.975      0.989       0.71

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   133/149     1.62G   0.02098    0.0121  0.003789        28       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.75it/s]
                 all        360        359      0.984      0.972      0.989      0.718

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   134/149     1.62G   0.02099   0.01211  0.004553        37       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:05<00:00,  2.18it/s]
                 all        360        359      0.988      0.972       0.99      0.717

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   135/149     1.62G    0.0204   0.01198  0.003828        36       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.73it/s]
                 all        360        359      0.982      0.972      0.988      0.703

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   136/149     1.62G   0.02085   0.01248  0.003578        35       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.70it/s]
                 all        360        359      0.987      0.978      0.987      0.702

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   137/149     1.62G   0.02018   0.01218  0.004048        26       416: 100% 79/79 [00:43<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.72it/s]
                 all        360        359      0.987      0.972      0.989       0.71

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   138/149     1.62G   0.02031    0.0123   0.00356        29       416: 100% 79/79 [00:43<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.75it/s]
                 all        360        359      0.988      0.972      0.989       0.71

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   139/149     1.62G   0.02092   0.01213  0.003891        26       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.73it/s]
                 all        360        359      0.988      0.975       0.99       0.71

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   140/149     1.62G   0.02009   0.01209  0.004039        32       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.73it/s]
                 all        360        359      0.988      0.975      0.988      0.705

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   141/149     1.62G   0.02059   0.01228    0.0038        33       416: 100% 79/79 [00:43<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.75it/s]
                 all        360        359      0.991      0.969      0.989      0.713

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   142/149     1.62G   0.02049   0.01189  0.004289        35       416: 100% 79/79 [00:42<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.73it/s]
                 all        360        359      0.994      0.972       0.99      0.715

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   143/149     1.62G   0.01981   0.01201  0.003328        27       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.71it/s]
                 all        360        359      0.991      0.972      0.989      0.703

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   144/149     1.62G   0.02104   0.01206   0.00451        32       416: 100% 79/79 [00:43<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.75it/s]
                 all        360        359       0.99      0.978      0.987      0.707

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   145/149     1.62G   0.02065   0.01219  0.004047        35       416: 100% 79/79 [00:43<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.76it/s]
                 all        360        359      0.979      0.978      0.987      0.697

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   146/149     1.62G   0.02067   0.01179  0.004503        29       416: 100% 79/79 [00:43<00:00,  1.84it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.74it/s]
                 all        360        359      0.987      0.977      0.988      0.695

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   147/149     1.62G   0.02039   0.01239  0.004225        29       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.74it/s]
                 all        360        359      0.982      0.975      0.986        0.7

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   148/149     1.62G   0.02021   0.01201  0.003914        30       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:04<00:00,  2.72it/s]
                 all        360        359      0.985      0.975      0.987      0.704

     Epoch   gpu_mem       box       obj       cls    labels  img_size
   149/149     1.62G   0.02054   0.01199  0.003628        38       416: 100% 79/79 [00:43<00:00,  1.83it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:05<00:00,  2.15it/s]
                 all        360        359      0.982      0.978      0.987      0.694

150 epochs completed in 2.008 hours.
Optimizer stripped from runs/train/exp3/weights/last.pt, 14.3MB
Optimizer stripped from runs/train/exp3/weights/best.pt, 14.3MB

Validating runs/train/exp3/weights/best.pt...
Fusing layers... 
Model Summary: 213 layers, 7015519 parameters, 0 gradients, 15.8 GFLOPs
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 12/12 [00:07<00:00,  1.54it/s]
                 all        360        359      0.984      0.972      0.989      0.718
             cheetah        360        180      0.997          1      0.995      0.783
               hyena        360        179      0.971      0.944      0.983      0.653

wandb: Waiting for W&B process to finish, PID 417... (success).
wandb:                                                                                
wandb: Run history:
wandb:        metrics/mAP_0.5 ▁▅▇▇▆▇▇▇█▇▇██▇██████████████████████████
wandb:   metrics/mAP_0.5:0.95 ▁▃▅▄▄▄▅▆▆▅▅▇▆▆▇▆▇▇▇▇▇██▇▇▇▇▇█▇█████████▇
wandb:      metrics/precision ▁▅▆▆▆▇▇▇█▇▇▇█▇███▇█▇█████▇█████▇████████
wandb:         metrics/recall ▁▄▇▅▅▆▆▇▇▇▆▇▇▇█▇▇▇█▇████████████████████
wandb:         train/box_loss █▆▅▅▄▃▃▃▃▂▃▃▂▃▂▂▂▂▂▂▂▂▂▂▂▂▁▂▁▁▁▁▁▁▁▁▁▁▁▁
wandb:         train/cls_loss █▅▃▄▄▃▃▃▃▃▂▂▂▂▂▂▂▂▃▂▂▂▂▂▂▁▂▁▁▁▁▁▁▁▁▁▁▁▁▁
wandb:         train/obj_loss █▅▄▄▄▄▃▃▃▃▃▃▃▃▃▂▃▂▂▂▂▂▂▂▂▂▂▁▂▁▁▁▁▁▁▁▁▁▁▁
wandb:           val/box_loss ██▅▇▇▆▃▃▃▃▃▂▂▄▂▂▃▂▂▂▂▁▂▁▂▂▂▂▂▂▁▁▁▂▂▂▂▂▂▂
wandb:           val/cls_loss █▃▂▂▆▂▂▁▁▁▂▁▁▂▁▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
wandb:           val/obj_loss █▄▂▃▃▃▂▂▂▃▂▂▂▂▁▂▁▂▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
wandb:                  x/lr0 ▁▃▅█████▇▇▇▇▇▆▆▆▆▅▅▅▅▄▄▄▃▃▃▃▂▂▂▂▂▂▁▁▁▁▁▁
wandb:                  x/lr1 ▁▃▅█████▇▇▇▇▇▆▆▆▆▅▅▅▅▄▄▄▃▃▃▃▂▂▂▂▂▂▁▁▁▁▁▁
wandb:                  x/lr2 █▇▄▂▂▂▂▂▂▂▂▂▂▂▂▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
wandb: 
wandb: Run summary:
wandb:        metrics/mAP_0.5 0.98723
wandb:   metrics/mAP_0.5:0.95 0.69447
wandb:      metrics/precision 0.98229
wandb:         metrics/recall 0.97765
wandb:         train/box_loss 0.02054
wandb:         train/cls_loss 0.00363
wandb:         train/obj_loss 0.01199
wandb:           val/box_loss 0.02168
wandb:           val/cls_loss 5e-05
wandb:           val/obj_loss 0.00354
wandb:                  x/lr0 0.001
wandb:                  x/lr1 0.001
wandb:                  x/lr2 0.001
wandb: 
wandb: Synced 5 W&B file(s), 337 media file(s), 1 artifact file(s) and 0 other file(s)
wandb: Synced major-shadow-1: https://wandb.ai/lordronz/YOLOv5/runs/3j8heu3j
wandb: Find logs at: ./wandb/run-20211216_101614-3j8heu3j/logs/debug.log
wandb: 
Results saved to runs/train/exp3

Evaluate Custom YOLOv5 Detector Performance

Training losses and performance metrics are saved to Tensorboard and also to a logfile.

If you are new to these metrics, the one you want to focus on is mAP_0.5 - learn more about mean average precision here.

# Launch after you have started training
# logs save in the folder "runs"
%load_ext tensorboard
%tensorboard --logdir runs

Run Inference With Trained Weights

Run inference with a pretrained checkpoint on contents of test/images folder downloaded from Roboflow.

!python detect.py --weights runs/train/exp3/weights/best.pt --img 416 --conf 0.1 --source {dataset.location}/test/images

detect: weights=['runs/train/exp3/weights/best.pt'], source=/content/datasets/Visikom_PA03-1/test/images, imgsz=[416, 416], conf_thres=0.1, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/detect, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False
YOLOv5 🚀 v6.0-147-g628817d torch 1.10.0+cu111 CUDA:0 (Tesla K80, 11441MiB)

Fusing layers... 
Model Summary: 213 layers, 7015519 parameters, 0 gradients, 15.8 GFLOPs
image 1/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_005_resized_jpg.rf.63051f6977b3f3c0de7a7ca2d0eb857f.jpg: 416x416 1 cheetah, Done. (0.028s)
image 2/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_006_resized_jpg.rf.dc5b98e584c4e754af38c5da0642792d.jpg: 416x416 1 cheetah, Done. (0.028s)
image 3/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_015_resized_jpg.rf.ebea7c18d01ef8bd591bac856ba7f35d.jpg: 416x416 1 cheetah, Done. (0.028s)
image 4/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_025_resized_jpg.rf.c512cef7dc1757ea2afa53afeadb7e3b.jpg: 416x416 1 cheetah, Done. (0.028s)
image 5/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_027_resized_jpg.rf.cbad621e440ec2877116ad89fa09d9cb.jpg: 416x416 1 cheetah, Done. (0.028s)
image 6/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_032_resized_jpg.rf.081e952ba959c9c1b40b944d5b6ef476.jpg: 416x416 1 cheetah, Done. (0.028s)
image 7/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_034_resized_jpg.rf.d9580c4e7b077e6d932b21d779eafc24.jpg: 416x416 1 cheetah, Done. (0.028s)
image 8/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_036_resized_jpg.rf.3da3f5a5142795088f3f1ebeaa93b9f4.jpg: 416x416 1 cheetah, Done. (0.028s)
image 9/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_050_resized_jpg.rf.873f1c85b5bf5f7b2fa70d51e47c6710.jpg: 416x416 1 cheetah, Done. (0.028s)
image 10/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_054_resized_jpg.rf.6456cf429d68d5cbe8310815996c438f.jpg: 416x416 1 cheetah, Done. (0.028s)
image 11/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_073_resized_jpg.rf.ec0f494f708f2e70497c24e1aeafb25a.jpg: 416x416 1 cheetah, 1 hyena, Done. (0.028s)
image 12/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_095_resized_jpg.rf.aca36a5afa428ce867eef5e3c54c6010.jpg: 416x416 1 cheetah, Done. (0.028s)
image 13/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_099_resized_jpg.rf.0450c277400afaa6551c76219d05d177.jpg: 416x416 1 cheetah, Done. (0.028s)
image 14/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_118_resized_jpg.rf.dcc6154de15bc3fd6478c71d205a07fd.jpg: 416x416 1 cheetah, Done. (0.028s)
image 15/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_121_resized_jpg.rf.a96a3c01751ee8926e0a2db5ff5c2772.jpg: 416x416 1 cheetah, Done. (0.028s)
image 16/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_123_resized_jpg.rf.a7c96ba143caa2fb5e18a2f61996fc40.jpg: 416x416 1 cheetah, Done. (0.028s)
image 17/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_125_resized_jpg.rf.a9edf11b4a4704c32d814386844d6805.jpg: 416x416 1 cheetah, Done. (0.028s)
image 18/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_134_resized_jpg.rf.8adfc24cd4d80964d4815d10c6719c56.jpg: 416x416 1 cheetah, Done. (0.028s)
image 19/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_146_resized_jpg.rf.76c073af5ba474e584508b7740c6b64c.jpg: 416x416 1 cheetah, Done. (0.028s)
image 20/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_147_resized_jpg.rf.366e021c2612b1b8abb0834de478ce84.jpg: 416x416 1 cheetah, Done. (0.027s)
image 21/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_161_resized_jpg.rf.3323e6c32711ab18f1588c2abb2f030b.jpg: 416x416 1 cheetah, Done. (0.027s)
image 22/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_165_resized_jpg.rf.2643aac0d5b01d39f6753f97323c4a74.jpg: 416x416 1 cheetah, Done. (0.028s)
image 23/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_196_resized_jpg.rf.3d59a3e10d2bb28fac9e7c2f2206c928.jpg: 416x416 1 cheetah, Done. (0.027s)
image 24/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_197_resized_jpg.rf.dc5df696cba07b9c6433b94431a82c4e.jpg: 416x416 1 cheetah, Done. (0.028s)
image 25/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_215_resized_jpg.rf.f3b9f5d9e36fa21535dffedbc807b826.jpg: 416x416 1 cheetah, Done. (0.028s)
image 26/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_222_resized_jpg.rf.0dbc89bb96bb48d9b337ad7cf1e8c71a.jpg: 416x416 1 cheetah, Done. (0.028s)
image 27/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_229_resized_jpg.rf.a14e4f92d9f043f4867bcbc1cf005ab3.jpg: 416x416 1 cheetah, Done. (0.028s)
image 28/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_261_resized_jpg.rf.c9bb1109a4053eed6388f86e389ff59a.jpg: 416x416 1 cheetah, Done. (0.028s)
image 29/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_269_resized_jpg.rf.b8c784c25695ca4e04c0e343fe8517a6.jpg: 416x416 1 cheetah, Done. (0.027s)
image 30/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_275_resized_jpg.rf.ed6a898edcfe3003d5cf8c0452a29472.jpg: 416x416 1 cheetah, Done. (0.028s)
image 31/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_303_resized_jpg.rf.8d608f02aa58cad13f41e854e9e5861d.jpg: 416x416 1 cheetah, Done. (0.028s)
image 32/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_323_resized_jpg.rf.cb89dd3b86ec343c811e6fddbb596bde.jpg: 416x416 2 cheetahs, Done. (0.027s)
image 33/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_332_resized_jpg.rf.16e01f268b84378693eb70d97ae464e5.jpg: 416x416 1 cheetah, Done. (0.027s)
image 34/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_339_resized_jpg.rf.b646953b258652df9d2ac4a8ed498a8a.jpg: 416x416 1 cheetah, Done. (0.027s)
image 35/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_347_resized_jpg.rf.579c2e18a9cdcc97ec55ec3869fe6f34.jpg: 416x416 1 cheetah, Done. (0.027s)
image 36/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_353_resized_jpg.rf.1ad5b9c410cdfb799e2ad3fc8614984b.jpg: 416x416 1 cheetah, Done. (0.027s)
image 37/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_358_resized_jpg.rf.eac92dd8cf34f8fd2e64337c766e74cf.jpg: 416x416 1 cheetah, Done. (0.027s)
image 38/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_363_resized_jpg.rf.95c2a38fd8bc59b794334ca6d0d957f7.jpg: 416x416 1 cheetah, Done. (0.027s)
image 39/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_373_resized_jpg.rf.d4d2d88b46f73e786cc93e02d551cf29.jpg: 416x416 1 cheetah, Done. (0.027s)
image 40/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_378_resized_jpg.rf.ca53e4392d9a87e48aacce939002be04.jpg: 416x416 1 cheetah, Done. (0.027s)
image 41/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_384_resized_jpg.rf.5b6dfbf22ada47e51883abccc93fac7f.jpg: 416x416 1 cheetah, Done. (0.027s)
image 42/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_401_resized_jpg.rf.755d6d41877de6631fd4d05d42112bd2.jpg: 416x416 1 cheetah, Done. (0.027s)
image 43/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_402_resized_jpg.rf.e73afb6ccfcb93c8c52d5e282d989687.jpg: 416x416 1 cheetah, Done. (0.027s)
image 44/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_431_resized_jpg.rf.407efd6135f33ca98a1cf0935632a64d.jpg: 416x416 1 cheetah, Done. (0.027s)
image 45/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_438_resized_jpg.rf.60a68d972ed4d38734198272cf2c4029.jpg: 416x416 1 cheetah, Done. (0.027s)
image 46/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_443_resized_jpg.rf.f687c110ef576889d29bff9c34d81344.jpg: 416x416 1 cheetah, Done. (0.027s)
image 47/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_458_resized_jpg.rf.eb7686faaa117752dcf772c1a6bc7ac2.jpg: 416x416 1 cheetah, Done. (0.027s)
image 48/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_489_resized_jpg.rf.de4ef86dd3e0bcd859fac6d7925b17eb.jpg: 416x416 1 cheetah, Done. (0.027s)
image 49/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_492_resized_jpg.rf.09101af9f4da8145adb83ed9cd875955.jpg: 416x416 1 cheetah, Done. (0.026s)
image 50/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_500_resized_jpg.rf.4d6179602039bbd0cbefb8f1d768f256.jpg: 416x416 1 cheetah, Done. (0.027s)
image 51/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_515_resized_jpg.rf.d05517e77bc05389e20b491a62cac7f8.jpg: 416x416 1 cheetah, Done. (0.027s)
image 52/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_519_resized_jpg.rf.b84c316069f048a7c06b0fed85f89369.jpg: 416x416 1 cheetah, Done. (0.027s)
image 53/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_529_resized_jpg.rf.abed8ff727ecc14cc30f845bc04a37e0.jpg: 416x416 1 cheetah, Done. (0.027s)
image 54/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_539_resized_jpg.rf.84a4652da89d26e30aa96c345398c3f0.jpg: 416x416 1 cheetah, Done. (0.027s)
image 55/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_576_resized_jpg.rf.24082367a1b9af9355bcdcae6c77723f.jpg: 416x416 1 cheetah, Done. (0.027s)
image 56/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_583_resized_jpg.rf.7d2f9998c403d43bb0add0ce8befc737.jpg: 416x416 1 cheetah, Done. (0.027s)
image 57/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_587_resized_jpg.rf.640b57d7dd553ceb4380e2b4853049dc.jpg: 416x416 1 cheetah, Done. (0.027s)
image 58/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_589_resized_jpg.rf.598d14abad1b2c238677eb24ac23e382.jpg: 416x416 1 cheetah, Done. (0.027s)
image 59/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_591_resized_jpg.rf.ed9e7d816851b1f0f23094efda14f6cc.jpg: 416x416 1 cheetah, Done. (0.027s)
image 60/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_599_resized_jpg.rf.e5014f9e7833dc8f82c7e9628d3ea21f.jpg: 416x416 1 cheetah, Done. (0.027s)
image 61/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_602_resized_jpg.rf.d2bf304462a76ab82debd724d1e05058.jpg: 416x416 1 cheetah, Done. (0.027s)
image 62/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_614_resized_jpg.rf.9c64a97b6fa5a00ecc619a47b2cdcc0b.jpg: 416x416 1 cheetah, Done. (0.027s)
image 63/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_623_resized_jpg.rf.f844bbd7e68986671fbe9bcb7fa4f8f1.jpg: 416x416 1 cheetah, Done. (0.027s)
image 64/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_624_resized_jpg.rf.f414da12b643d10c57f4533dc7e843da.jpg: 416x416 1 cheetah, Done. (0.027s)
image 65/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_627_resized_jpg.rf.4aff71ec96fddbd3c86235d5ed6ad71f.jpg: 416x416 1 cheetah, Done. (0.027s)
image 66/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_639_resized_jpg.rf.e396d7fa48c133226305de25f9114ec7.jpg: 416x416 1 cheetah, Done. (0.027s)
image 67/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_645_resized_jpg.rf.8ae9ddb296dbc6d4bed191875a5632da.jpg: 416x416 1 cheetah, Done. (0.027s)
image 68/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_661_resized_jpg.rf.87b388ce3063568de96402a8b84ffd81.jpg: 416x416 1 cheetah, Done. (0.027s)
image 69/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_678_resized_jpg.rf.9743aeacc0d38677e47681eac1456d0c.jpg: 416x416 1 cheetah, Done. (0.027s)
image 70/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_682_resized_jpg.rf.591aeab321876785fa7622836fe1fbe2.jpg: 416x416 1 cheetah, Done. (0.027s)
image 71/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_691_resized_jpg.rf.b5961e317898cab3e957c6510683e310.jpg: 416x416 1 cheetah, Done. (0.027s)
image 72/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_716_resized_jpg.rf.74f29c4b7225afbe75e14df4e3927845.jpg: 416x416 1 cheetah, Done. (0.026s)
image 73/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_721_resized_jpg.rf.dc1cc2e07de2ed7545365d62d94c4df9.jpg: 416x416 1 cheetah, Done. (0.026s)
image 74/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_728_resized_jpg.rf.440fc6395e97be80f6a2cdd17878b62c.jpg: 416x416 1 cheetah, Done. (0.026s)
image 75/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_729_resized_jpg.rf.9ee063a3a217acc1b9d2f9d22a25e19e.jpg: 416x416 1 cheetah, Done. (0.026s)
image 76/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_735_resized_jpg.rf.d5bdd8512fe5f4a0802c73c9b8b598f3.jpg: 416x416 1 cheetah, Done. (0.026s)
image 77/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_752_resized_jpg.rf.44f1405e0febe5ee7c52a9f371c624b8.jpg: 416x416 1 cheetah, Done. (0.027s)
image 78/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_754_resized_jpg.rf.a0d062f6c190e48a95c07e6295c2fb3a.jpg: 416x416 1 cheetah, Done. (0.026s)
image 79/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_772_resized_jpg.rf.ecd71c228a03095ef1abc08989792cc7.jpg: 416x416 1 cheetah, Done. (0.026s)
image 80/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_777_resized_jpg.rf.8a3d32da0a6a7b7fef6403f38c2db8c3.jpg: 416x416 1 cheetah, Done. (0.026s)
image 81/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_782_resized_jpg.rf.0036b44d96c9feab1f66074f1be21d56.jpg: 416x416 1 cheetah, Done. (0.026s)
image 82/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_787_resized_jpg.rf.8194fe836ec5876de3689c7c1854e950.jpg: 416x416 1 cheetah, Done. (0.026s)
image 83/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_833_resized_jpg.rf.cc8fac66fb9754fe1a755bdcd3895fcd.jpg: 416x416 1 cheetah, Done. (0.026s)
image 84/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_837_resized_jpg.rf.c32603f6c858b7c91f6653cd6dbc14f0.jpg: 416x416 1 cheetah, Done. (0.026s)
image 85/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_838_resized_jpg.rf.39ce4568af414a00a7b0f3996ca24229.jpg: 416x416 1 cheetah, Done. (0.027s)
image 86/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_841_resized_jpg.rf.fe77d7038f3054c491f7594460d49e05.jpg: 416x416 1 cheetah, Done. (0.026s)
image 87/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_868_resized_jpg.rf.b0b124e30d2dae898a9d0667b4d68a24.jpg: 416x416 1 cheetah, Done. (0.027s)
image 88/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_892_resized_jpg.rf.05a12252000caa07e117b6a4286f891c.jpg: 416x416 1 cheetah, Done. (0.026s)
image 89/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_893_resized_jpg.rf.ae87fe1e1b89792aa31aec6e069f5686.jpg: 416x416 1 cheetah, Done. (0.026s)
image 90/180 /content/datasets/Visikom_PA03-1/test/images/cheetah_894_resized_jpg.rf.ef1fc54771bfcfb250fba10720294509.jpg: 416x416 1 cheetah, Done. (0.026s)
image 91/180 /content/datasets/Visikom_PA03-1/test/images/hyena_004_resized_jpg.rf.fd5010d5313af6dc0d1bd73df6dda5fe.jpg: 416x416 1 hyena, Done. (0.026s)
image 92/180 /content/datasets/Visikom_PA03-1/test/images/hyena_008_resized_jpg.rf.70f189d8a781bf56d91b730f09c107db.jpg: 416x416 1 hyena, Done. (0.026s)
image 93/180 /content/datasets/Visikom_PA03-1/test/images/hyena_011_resized_jpg.rf.2c09a97bb06cda0bb0b9b804a9b3e578.jpg: 416x416 1 hyena, Done. (0.026s)
image 94/180 /content/datasets/Visikom_PA03-1/test/images/hyena_012_resized_jpg.rf.89b83d5b20a1d53dfe464dc0f6276703.jpg: 416x416 1 hyena, Done. (0.027s)
image 95/180 /content/datasets/Visikom_PA03-1/test/images/hyena_031_resized_jpg.rf.0c4a6c1021cb4caef232a533c68792ef.jpg: 416x416 1 hyena, Done. (0.027s)
image 96/180 /content/datasets/Visikom_PA03-1/test/images/hyena_054_resized_jpg.rf.b5fc935ec91f4f9b0efc3b99b9a57cb5.jpg: 416x416 1 hyena, Done. (0.026s)
image 97/180 /content/datasets/Visikom_PA03-1/test/images/hyena_056_resized_jpg.rf.e37995a577b2b8442aa02bfa52e84969.jpg: 416x416 1 hyena, Done. (0.026s)
image 98/180 /content/datasets/Visikom_PA03-1/test/images/hyena_070_resized_jpg.rf.a3d01fdfdcf94df1750c8a4c464fb846.jpg: 416x416 1 hyena, Done. (0.026s)
image 99/180 /content/datasets/Visikom_PA03-1/test/images/hyena_077_resized_jpg.rf.5c4ebfe0a786b9cd72f04e8e1456fb0d.jpg: 416x416 2 hyenas, Done. (0.027s)
image 100/180 /content/datasets/Visikom_PA03-1/test/images/hyena_089_resized_jpg.rf.443b8ff18f7f4acc4d77c660a1bcf26e.jpg: 416x416 1 hyena, Done. (0.027s)
image 101/180 /content/datasets/Visikom_PA03-1/test/images/hyena_094_resized_jpg.rf.96cb2e68e04c046fe02ccbf486dd8056.jpg: 416x416 1 hyena, Done. (0.026s)
image 102/180 /content/datasets/Visikom_PA03-1/test/images/hyena_109_resized_jpg.rf.cf804ed0007301d6813e1b5e67023547.jpg: 416x416 1 hyena, Done. (0.026s)
image 103/180 /content/datasets/Visikom_PA03-1/test/images/hyena_110_resized_jpg.rf.c083d2087c8dd025b61249051df1f3cb.jpg: 416x416 1 hyena, Done. (0.026s)
image 104/180 /content/datasets/Visikom_PA03-1/test/images/hyena_119_resized_jpg.rf.a6b86838ad2a92ec49a239d72a498a0b.jpg: 416x416 1 hyena, Done. (0.026s)
image 105/180 /content/datasets/Visikom_PA03-1/test/images/hyena_123_resized_jpg.rf.6dce5cba622a4ecb57dd89410b483f2a.jpg: 416x416 1 hyena, Done. (0.027s)
image 106/180 /content/datasets/Visikom_PA03-1/test/images/hyena_146_resized_jpg.rf.348e28f088cec983476d3c62d3b2bb4f.jpg: 416x416 1 hyena, Done. (0.026s)
image 107/180 /content/datasets/Visikom_PA03-1/test/images/hyena_150_resized_jpg.rf.669286f62963fb635bcb2a86fdcf4703.jpg: 416x416 1 hyena, Done. (0.026s)
image 108/180 /content/datasets/Visikom_PA03-1/test/images/hyena_159_resized_jpg.rf.776fb1a0fec18f349fd7025a49514acf.jpg: 416x416 1 hyena, Done. (0.027s)
image 109/180 /content/datasets/Visikom_PA03-1/test/images/hyena_200_resized_jpg.rf.dc227f48cde6ebe9f4e855096eb13eb9.jpg: 416x416 1 hyena, Done. (0.026s)
image 110/180 /content/datasets/Visikom_PA03-1/test/images/hyena_216_resized_jpg.rf.431002a92f2dc9b100342749ce419ffa.jpg: 416x416 1 hyena, Done. (0.026s)
image 111/180 /content/datasets/Visikom_PA03-1/test/images/hyena_218_resized_jpg.rf.8d5cc065a6b5614ed579b3a9f48d0c82.jpg: 416x416 1 hyena, Done. (0.027s)
image 112/180 /content/datasets/Visikom_PA03-1/test/images/hyena_228_resized_jpg.rf.0b3c943fee5ca85ea18ca1e22928c7e0.jpg: 416x416 1 hyena, Done. (0.026s)
image 113/180 /content/datasets/Visikom_PA03-1/test/images/hyena_234_resized_jpg.rf.55a063937db4e216a7c623c9bf5bb9eb.jpg: 416x416 1 hyena, Done. (0.027s)
image 114/180 /content/datasets/Visikom_PA03-1/test/images/hyena_238_resized_jpg.rf.d568052282884b216002ffa9173dd914.jpg: 416x416 1 hyena, Done. (0.027s)
image 115/180 /content/datasets/Visikom_PA03-1/test/images/hyena_245_resized_jpg.rf.aeb50005325b2dfaf9118f9610acd9e7.jpg: 416x416 1 hyena, Done. (0.026s)
image 116/180 /content/datasets/Visikom_PA03-1/test/images/hyena_250_resized_jpg.rf.2ebe031d7f2f254d5eb1dded7366fa47.jpg: 416x416 1 hyena, Done. (0.026s)
image 117/180 /content/datasets/Visikom_PA03-1/test/images/hyena_257_resized_jpg.rf.5060dd4dc7176d3d4ef4bf3b2384418a.jpg: 416x416 1 hyena, Done. (0.026s)
image 118/180 /content/datasets/Visikom_PA03-1/test/images/hyena_263_resized_jpg.rf.15e1d3d8db3729815f024b778e8ddb84.jpg: 416x416 1 hyena, Done. (0.027s)
image 119/180 /content/datasets/Visikom_PA03-1/test/images/hyena_279_resized_jpg.rf.0b0c6d8178a8f1817c9705ee329c6d8d.jpg: 416x416 1 hyena, Done. (0.027s)
image 120/180 /content/datasets/Visikom_PA03-1/test/images/hyena_327_resized_jpg.rf.4bb1471c8be9de00b2b637f17c745cc9.jpg: 416x416 1 hyena, Done. (0.026s)
image 121/180 /content/datasets/Visikom_PA03-1/test/images/hyena_334_resized_jpg.rf.8eee848c54b760c1c97ab7598426c052.jpg: 416x416 1 hyena, Done. (0.026s)
image 122/180 /content/datasets/Visikom_PA03-1/test/images/hyena_337_resized_jpg.rf.0dc070afe637542a890f5eaabca91a66.jpg: 416x416 1 hyena, Done. (0.027s)
image 123/180 /content/datasets/Visikom_PA03-1/test/images/hyena_359_resized_jpg.rf.524d5f44dd8bfcd339c7b5446b3ddb71.jpg: 416x416 1 hyena, Done. (0.027s)
image 124/180 /content/datasets/Visikom_PA03-1/test/images/hyena_363_resized_jpg.rf.9315ad927e30337a548210e2fb44f286.jpg: 416x416 1 hyena, Done. (0.026s)
image 125/180 /content/datasets/Visikom_PA03-1/test/images/hyena_364_resized_jpg.rf.669b4a83f37bc33cbf1df9b144184a1e.jpg: 416x416 1 hyena, Done. (0.027s)
image 126/180 /content/datasets/Visikom_PA03-1/test/images/hyena_377_resized_jpg.rf.5b2a53d30beb2870f2a4b06f79517ba9.jpg: 416x416 1 hyena, Done. (0.027s)
image 127/180 /content/datasets/Visikom_PA03-1/test/images/hyena_385_resized_jpg.rf.dc6b958347ec3b895c2848733d2f4d73.jpg: 416x416 2 hyenas, Done. (0.026s)
image 128/180 /content/datasets/Visikom_PA03-1/test/images/hyena_387_resized_jpg.rf.38213444b05639fb254dd9e2c57c125e.jpg: 416x416 2 hyenas, Done. (0.026s)
image 129/180 /content/datasets/Visikom_PA03-1/test/images/hyena_388_resized_jpg.rf.f12a6acda15facf991afebcd262e8a12.jpg: 416x416 2 hyenas, Done. (0.026s)
image 130/180 /content/datasets/Visikom_PA03-1/test/images/hyena_389_resized_jpg.rf.a6f41406fdd99aa54d0d9be92a450561.jpg: 416x416 1 hyena, Done. (0.027s)
image 131/180 /content/datasets/Visikom_PA03-1/test/images/hyena_390_resized_jpg.rf.f03c79da900bb549fa672b2dcc844dd6.jpg: 416x416 1 hyena, Done. (0.027s)
image 132/180 /content/datasets/Visikom_PA03-1/test/images/hyena_391_resized_jpg.rf.e5e2f2113e380739e54988a6dd524f9e.jpg: 416x416 1 hyena, Done. (0.026s)
image 133/180 /content/datasets/Visikom_PA03-1/test/images/hyena_395_resized_jpg.rf.965924d36b552a4832bd06e0cdf9ef4d.jpg: 416x416 1 hyena, Done. (0.026s)
image 134/180 /content/datasets/Visikom_PA03-1/test/images/hyena_397_resized_jpg.rf.ef9e774780286062d7a246d06be13b21.jpg: 416x416 2 hyenas, Done. (0.026s)
image 135/180 /content/datasets/Visikom_PA03-1/test/images/hyena_415_resized_jpg.rf.1f5cd77ed68e4b19e9cabf820fad04b2.jpg: 416x416 1 hyena, Done. (0.026s)
image 136/180 /content/datasets/Visikom_PA03-1/test/images/hyena_428_resized_jpg.rf.06460db3fe4041b1767d1f65b1871568.jpg: 416x416 1 hyena, Done. (0.027s)
image 137/180 /content/datasets/Visikom_PA03-1/test/images/hyena_431_resized_jpg.rf.87187cfb73f647241c7f572a7652e7f6.jpg: 416x416 1 hyena, Done. (0.026s)
image 138/180 /content/datasets/Visikom_PA03-1/test/images/hyena_463_resized_jpg.rf.916057f28b5bc17d63186b5c45527dfb.jpg: 416x416 1 hyena, Done. (0.027s)
image 139/180 /content/datasets/Visikom_PA03-1/test/images/hyena_480_resized_jpg.rf.3047f91a3076ce2a5c442a50c60adf3a.jpg: 416x416 1 hyena, Done. (0.027s)
image 140/180 /content/datasets/Visikom_PA03-1/test/images/hyena_504_resized_jpg.rf.573e9a288bd6b23a371213f85c44635b.jpg: 416x416 1 hyena, Done. (0.027s)
image 141/180 /content/datasets/Visikom_PA03-1/test/images/hyena_514_resized_jpg.rf.cb95b645caa520b4b49f2ada43a401ee.jpg: 416x416 1 hyena, Done. (0.027s)
image 142/180 /content/datasets/Visikom_PA03-1/test/images/hyena_557_resized_jpg.rf.c0b8fe6f8a2ea2246df77d81a58310d4.jpg: 416x416 1 hyena, Done. (0.026s)
image 143/180 /content/datasets/Visikom_PA03-1/test/images/hyena_559_resized_jpg.rf.112638174d23ee98f062855176c68783.jpg: 416x416 1 hyena, Done. (0.026s)
image 144/180 /content/datasets/Visikom_PA03-1/test/images/hyena_561_resized_jpg.rf.299488b121f3a6b5818e920a5a90c13b.jpg: 416x416 1 hyena, Done. (0.027s)
image 145/180 /content/datasets/Visikom_PA03-1/test/images/hyena_568_resized_jpg.rf.b309d1597ddd7a4f52c84ad4fae17fcc.jpg: 416x416 1 hyena, Done. (0.027s)
image 146/180 /content/datasets/Visikom_PA03-1/test/images/hyena_594_resized_jpg.rf.d515cec39c6aec0a849459f6265cd540.jpg: 416x416 1 hyena, Done. (0.026s)
image 147/180 /content/datasets/Visikom_PA03-1/test/images/hyena_599_resized_jpg.rf.efef44abdcdf803d8ec06a678eff4f6c.jpg: 416x416 1 hyena, Done. (0.027s)
image 148/180 /content/datasets/Visikom_PA03-1/test/images/hyena_605_resized_jpg.rf.fd47b0f546256c819d86fa526acbe551.jpg: 416x416 1 hyena, Done. (0.027s)
image 149/180 /content/datasets/Visikom_PA03-1/test/images/hyena_609_resized_jpg.rf.e0f3dde1607646c5fc1b05a40d45f91c.jpg: 416x416 1 hyena, Done. (0.027s)
image 150/180 /content/datasets/Visikom_PA03-1/test/images/hyena_613_resized_jpg.rf.52ec1c7e2eae5ba08e2fdc6c729955e3.jpg: 416x416 1 hyena, Done. (0.027s)
image 151/180 /content/datasets/Visikom_PA03-1/test/images/hyena_618_resized_jpg.rf.f1f4e7733003fd37abf72b39069d4ff1.jpg: 416x416 1 hyena, Done. (0.026s)
image 152/180 /content/datasets/Visikom_PA03-1/test/images/hyena_621_resized_jpg.rf.b6df1601362a91fb7087333425c63acd.jpg: 416x416 1 hyena, Done. (0.026s)
image 153/180 /content/datasets/Visikom_PA03-1/test/images/hyena_624_resized_jpg.rf.69aac35e9cff0d62f83171b5e217eeac.jpg: 416x416 1 hyena, Done. (0.027s)
image 154/180 /content/datasets/Visikom_PA03-1/test/images/hyena_627_resized_jpg.rf.f8b4b3c4a59ecf4fca25447a3701e9b6.jpg: 416x416 1 hyena, Done. (0.027s)
image 155/180 /content/datasets/Visikom_PA03-1/test/images/hyena_663_resized_jpg.rf.cb9492badceebbbd1799019234729d96.jpg: 416x416 1 hyena, Done. (0.026s)
image 156/180 /content/datasets/Visikom_PA03-1/test/images/hyena_686_resized_jpg.rf.dfc7abff9efc63d3335f93a2d19bab30.jpg: 416x416 1 hyena, Done. (0.026s)
image 157/180 /content/datasets/Visikom_PA03-1/test/images/hyena_704_resized_jpg.rf.fe64bdf956c67f6e07acba8451a1d9c4.jpg: 416x416 1 hyena, Done. (0.026s)
image 158/180 /content/datasets/Visikom_PA03-1/test/images/hyena_705_resized_jpg.rf.5c20a25638f6e68936e3fd3341e7eefd.jpg: 416x416 1 hyena, Done. (0.027s)
image 159/180 /content/datasets/Visikom_PA03-1/test/images/hyena_711_resized_jpg.rf.8d232e66ad0c2c051341eab901237c3e.jpg: 416x416 1 hyena, Done. (0.027s)
image 160/180 /content/datasets/Visikom_PA03-1/test/images/hyena_712_resized_jpg.rf.e15281507ce3b379c24bc696d6c0c637.jpg: 416x416 1 hyena, Done. (0.027s)
image 161/180 /content/datasets/Visikom_PA03-1/test/images/hyena_716_resized_jpg.rf.d56b6047bcae57c87c437b2252f54947.jpg: 416x416 1 hyena, Done. (0.027s)
image 162/180 /content/datasets/Visikom_PA03-1/test/images/hyena_718_resized_jpg.rf.09ba10d59c6078e8571ca5f5dc75c9b1.jpg: 416x416 1 hyena, Done. (0.026s)
image 163/180 /content/datasets/Visikom_PA03-1/test/images/hyena_722_resized_jpg.rf.5f9ce4b516d2037363f4fc3502253875.jpg: 416x416 1 hyena, Done. (0.027s)
image 164/180 /content/datasets/Visikom_PA03-1/test/images/hyena_730_resized_jpg.rf.8eb2146b9a49b2cd25e56e0d9084eb29.jpg: 416x416 1 hyena, Done. (0.026s)
image 165/180 /content/datasets/Visikom_PA03-1/test/images/hyena_749_resized_jpg.rf.7dd30be63fdad6f93abf73b30c223663.jpg: 416x416 1 hyena, Done. (0.026s)
image 166/180 /content/datasets/Visikom_PA03-1/test/images/hyena_755_resized_jpg.rf.5e967d33988cc3fa088d649507676ed3.jpg: 416x416 1 hyena, Done. (0.026s)
image 167/180 /content/datasets/Visikom_PA03-1/test/images/hyena_765_resized_jpg.rf.684d06bd32c8577503101910a6d97f21.jpg: 416x416 1 hyena, Done. (0.027s)
image 168/180 /content/datasets/Visikom_PA03-1/test/images/hyena_766_resized_jpg.rf.6de5929d11cfb0e8027563eeb0b15877.jpg: 416x416 1 hyena, Done. (0.027s)
image 169/180 /content/datasets/Visikom_PA03-1/test/images/hyena_802_resized_jpg.rf.01d88c6300c64f61496bf864d28eb306.jpg: 416x416 1 hyena, Done. (0.026s)
image 170/180 /content/datasets/Visikom_PA03-1/test/images/hyena_822_resized_jpg.rf.fdfb249015b2d584a59bc287aec24f71.jpg: 416x416 1 hyena, Done. (0.027s)
image 171/180 /content/datasets/Visikom_PA03-1/test/images/hyena_832_resized_jpg.rf.a4eac36705aa61b49e41182468b95124.jpg: 416x416 1 hyena, Done. (0.026s)
image 172/180 /content/datasets/Visikom_PA03-1/test/images/hyena_836_resized_jpg.rf.3a4ef0bfa42f16ed7ef2c2dc2a3c297b.jpg: 416x416 1 hyena, Done. (0.027s)
image 173/180 /content/datasets/Visikom_PA03-1/test/images/hyena_849_resized_jpg.rf.a148999c8db5c76e9037dfbc3a2db0fe.jpg: 416x416 1 hyena, Done. (0.026s)
image 174/180 /content/datasets/Visikom_PA03-1/test/images/hyena_869_resized_jpg.rf.0bb619f9316d78a115f928a6b06fd101.jpg: 416x416 1 hyena, Done. (0.026s)
image 175/180 /content/datasets/Visikom_PA03-1/test/images/hyena_873_resized_jpg.rf.bd6bd21ffc47c453114699b1833b54df.jpg: 416x416 2 hyenas, Done. (0.026s)
image 176/180 /content/datasets/Visikom_PA03-1/test/images/hyena_880_resized_jpg.rf.5e26aaf2a029784229643b1f78a3c105.jpg: 416x416 1 hyena, Done. (0.026s)
image 177/180 /content/datasets/Visikom_PA03-1/test/images/hyena_886_resized_jpg.rf.b7e0fa6bb5267435e2c581798d5ff8f6.jpg: 416x416 1 hyena, Done. (0.026s)
image 178/180 /content/datasets/Visikom_PA03-1/test/images/hyena_893_resized_jpg.rf.67254702fc04b402aa56146eab0be0e6.jpg: 416x416 1 hyena, Done. (0.026s)
image 179/180 /content/datasets/Visikom_PA03-1/test/images/hyena_894_resized_jpg.rf.fe58a03c03172e2293bef4050fd773de.jpg: 416x416 1 hyena, Done. (0.026s)
image 180/180 /content/datasets/Visikom_PA03-1/test/images/hyena_895_resized_jpg.rf.68a767552b8337cec74fcc8d4d2a25a3.jpg: 416x416 1 hyena, Done. (0.026s)
Speed: 0.3ms pre-process, 26.8ms inference, 1.3ms NMS per image at shape (1, 3, 416, 416)
Results saved to runs/detect/exp2
#collapse-output

import glob
from IPython.display import Image, display

for imageName in glob.glob('/content/yolov5/runs/detect/exp2/*.jpg'): #assuming JPG
    display(Image(filename=imageName))
    print("\n")





















































































































































































Conclusion and Next Steps

Congratulations! You've trained a custom YOLOv5 model to recognize your custom objects.

To improve you model's performance, we recommend first interating on your datasets coverage and quality. See this guide for model performance improvement.

To deploy your model to an application, see this guide on exporting your model to deployment destinations.

Once your model is in production, you will want to continually iterate and improve on your dataset and model via active learning.

from google.colab import files
files.download('./runs/train/exp3/weights/best.pt')